Solve.

[tex]\[ 2a + 4 \ \textgreater \ 12 \][/tex]

A. [tex]\(\{a \mid a \ \textgreater \ 2\}\)[/tex]
B. [tex]\(\{a \mid a \ \textgreater \ 4\}\)[/tex]
C. [tex]\(\{a \mid a \ \textgreater \ 8\}\)[/tex]
D. [tex]\(\{a \mid a \ \textgreater \ 10\}\)[/tex]



Answer :

To solve the inequality [tex]\(2a + 4 > 12\)[/tex], follow these steps:

1. Subtract 4 from both sides:
[tex]\[ 2a + 4 - 4 > 12 - 4 \][/tex]
Simplifying this, we get:
[tex]\[ 2a > 8 \][/tex]

2. Divide both sides by 2:
[tex]\[ \frac{2a}{2} > \frac{8}{2} \][/tex]
Simplifying this, we get:
[tex]\[ a > 4 \][/tex]

Hence, the solution to the inequality [tex]\(2a + 4 > 12\)[/tex] is [tex]\(\{a \mid a > 4\}\)[/tex].

Among the given options, the correct solution is:
[tex]\[ \{a \mid a > 4\} \][/tex]