Which of the following expressions is equivalent to [tex][tex]$27^2 \times 81^{0.5}$[/tex][/tex]?

A. [tex][tex]$3^7$[/tex][/tex]
B. [tex][tex]$3^8$[/tex][/tex]
C. [tex][tex]$9^5$[/tex][/tex]
D. [tex][tex]$27^{2.5}$[/tex][/tex]
E. [tex][tex]$2187^{2.5}$[/tex][/tex]



Answer :

Let's solve the problem step-by-step to determine which of the given expressions is equivalent to the expression [tex]\(27^2 \times 81^{0.5}\)[/tex].

First, break down the expression [tex]\(27^2 \times 81^{0.5}\)[/tex].

1. Evaluate [tex]\(27^2\)[/tex]:

Note that [tex]\(27\)[/tex] can be expressed as [tex]\(3^3\)[/tex]:

[tex]\[ 27 = 3^3 \][/tex]

Therefore,

[tex]\[ 27^2 = (3^3)^2 = 3^{3 \times 2} = 3^6 \][/tex]

2. Evaluate [tex]\(81^{0.5}\)[/tex]:

Note that [tex]\(81\)[/tex] can be expressed as [tex]\(3^4\)[/tex]:

[tex]\[ 81 = 3^4 \][/tex]

Therefore,

[tex]\[ 81^{0.5} = (3^4)^{0.5} = 3^{4 \times 0.5} = 3^2 \][/tex]

3. Combine the results:

Now we have:

[tex]\[ 27^2 \times 81^{0.5} = 3^6 \times 3^2 \][/tex]

Using the laws of exponents, specifically [tex]\(a^m \times a^n = a^{m+n}\)[/tex]:

[tex]\[ 3^6 \times 3^2 = 3^{6+2} = 3^8 \][/tex]

Therefore, the expression [tex]\(27^2 \times 81^{0.5}\)[/tex] simplifies to [tex]\(3^8\)[/tex].

So, the correct choice is:

B. [tex]\(3^8\)[/tex]