Answered

Which set of numbers gives the correct possible values of [tex][tex]$\ell$[/tex][/tex] for [tex][tex]$n=2$[/tex][/tex]?

A. 0
B. 0,1
C. [tex][tex]$0,1,2$[/tex][/tex]
D. [tex][tex]$0,1,2,3$[/tex][/tex]



Answer :

To determine the correct set of possible values for [tex]\( n = 2 \)[/tex], let's proceed step-by-step:

1. Start by identifying the value [tex]\( n \)[/tex], which is given as [tex]\( n = 2 \)[/tex].

2. We need to find the possible values based on [tex]\( n \)[/tex].

3. For this case, we consider numbers starting from 0 up to [tex]\( n + 1 \)[/tex]. Thus, we need to generate the numbers from 0 to [tex]\( 2 + 1 \)[/tex], which simplifies to 3.

4. The sequence of numbers from 0 up to and including 3 is [tex]\( 0, 1, 2, 3 \)[/tex].

Therefore, the correct set of possible values for [tex]\( n = 2 \)[/tex] is [tex]\(\{0, 1, 2, 3\}\)[/tex]. Thus, the answer is [tex]\( 0,1,2,3 \)[/tex].