What is the volume of a rectangular prism with the following dimensions?
- Length: 18 in.
- Height: 6 in.
- Width: 12 in.

A. 1926 in. [tex][tex]$^3$[/tex][/tex]
B. 1296 in. [tex][tex]$^3$[/tex][/tex]
C. 72 in. [tex][tex]$^3$[/tex][/tex]
D. 108 in. [tex][tex]$^3$[/tex][/tex]



Answer :

To find the volume of a rectangular prism, we use the formula:

[tex]\[ \text{Volume} = \text{length} \times \text{width} \times \text{height} \][/tex]

Given the dimensions:
- Length = 18 inches
- Width = 12 inches
- Height = 6 inches

Substitute these values into the formula:

[tex]\[ \text{Volume} = 18 \, \text{in.} \times 12 \, \text{in.} \times 6 \, \text{in.} \][/tex]

Multiplying these together:

[tex]\[ \text{Volume} = 18 \times 12 \times 6 \][/tex]

This calculation results in:

[tex]\[ \text{Volume} = 1296 \, \text{in.}^3 \][/tex]

Therefore, the volume of the rectangular prism is:

[tex]\[ 1296 \, \text{in.}^3 \][/tex]

So, the correct answer is:
[tex]\[ \boxed{1296 \, \text{in.}^3} \][/tex]