Answer :
Let's simplify the given expression step-by-step:
The expression is:
[tex]\[ \left(\frac{\left(2^{-3}\right)\left(x^{-3}\right)\left(y^2\right)}{\left(4^{-2}\right)\left(x^4\right)\left(y^6\right)}\right)^2 \][/tex]
First, let's simplify the fraction inside the parentheses.
### Numerator:
[tex]\[ 2^{-3} \cdot x^{-3} \cdot y^2 \][/tex]
### Denominator:
[tex]\[ 4^{-2} \cdot x^4 \cdot y^6 \][/tex]
#### Simplify [tex]\( 4^{-2} \)[/tex]:
Note that [tex]\( 4 = 2^2 \)[/tex], so:
[tex]\[ 4^{-2} = (2^2)^{-2} = 2^{-4} \][/tex]
Therefore, the denominator becomes:
[tex]\[ 2^{-4} \cdot x^4 \cdot y^6 \][/tex]
Now we rewrite the entire fraction:
[tex]\[ \frac{2^{-3} \cdot x^{-3} \cdot y^2}{2^{-4} \cdot x^4 \cdot y^6} \][/tex]
### Simplify the fraction by dividing the corresponding bases:
#### For the base 2:
[tex]\[ \frac{2^{-3}}{2^{-4}} = 2^{-3 - (-4)} = 2^{-3 + 4} = 2^1 = 2 \][/tex]
#### For the base x:
[tex]\[ \frac{x^{-3}}{x^4} = x^{-3 - 4} = x^{-7} \][/tex]
#### For the base y:
[tex]\[ \frac{y^2}{y^6} = y^{2 - 6} = y^{-4} \][/tex]
So, the fraction simplifies to:
[tex]\[ 2 \cdot x^{-7} \cdot y^{-4} \][/tex]
Now, let's square the entire simplified expression:
[tex]\[ \left(2 \cdot x^{-7} \cdot y^{-4}\right)^2 \][/tex]
### Squaring each part separately:
#### For the coefficient 2:
[tex]\[ (2)^2 = 4 \][/tex]
#### For the base x:
[tex]\[ (x^{-7})^2 = x^{-7 \cdot 2} = x^{-14} \][/tex]
#### For the base y:
[tex]\[ (y^{-4})^2 = y^{-4 \cdot 2} = y^{-8} \][/tex]
Combining these results, we get:
[tex]\[ 4 \cdot x^{-14} \cdot y^{-8} = \frac{4}{x^{14} \cdot y^8} \][/tex]
Thus, the simplified form of the given expression is:
[tex]\[ \boxed{\frac{4}{x^{14} y^8}} \][/tex]
The expression is:
[tex]\[ \left(\frac{\left(2^{-3}\right)\left(x^{-3}\right)\left(y^2\right)}{\left(4^{-2}\right)\left(x^4\right)\left(y^6\right)}\right)^2 \][/tex]
First, let's simplify the fraction inside the parentheses.
### Numerator:
[tex]\[ 2^{-3} \cdot x^{-3} \cdot y^2 \][/tex]
### Denominator:
[tex]\[ 4^{-2} \cdot x^4 \cdot y^6 \][/tex]
#### Simplify [tex]\( 4^{-2} \)[/tex]:
Note that [tex]\( 4 = 2^2 \)[/tex], so:
[tex]\[ 4^{-2} = (2^2)^{-2} = 2^{-4} \][/tex]
Therefore, the denominator becomes:
[tex]\[ 2^{-4} \cdot x^4 \cdot y^6 \][/tex]
Now we rewrite the entire fraction:
[tex]\[ \frac{2^{-3} \cdot x^{-3} \cdot y^2}{2^{-4} \cdot x^4 \cdot y^6} \][/tex]
### Simplify the fraction by dividing the corresponding bases:
#### For the base 2:
[tex]\[ \frac{2^{-3}}{2^{-4}} = 2^{-3 - (-4)} = 2^{-3 + 4} = 2^1 = 2 \][/tex]
#### For the base x:
[tex]\[ \frac{x^{-3}}{x^4} = x^{-3 - 4} = x^{-7} \][/tex]
#### For the base y:
[tex]\[ \frac{y^2}{y^6} = y^{2 - 6} = y^{-4} \][/tex]
So, the fraction simplifies to:
[tex]\[ 2 \cdot x^{-7} \cdot y^{-4} \][/tex]
Now, let's square the entire simplified expression:
[tex]\[ \left(2 \cdot x^{-7} \cdot y^{-4}\right)^2 \][/tex]
### Squaring each part separately:
#### For the coefficient 2:
[tex]\[ (2)^2 = 4 \][/tex]
#### For the base x:
[tex]\[ (x^{-7})^2 = x^{-7 \cdot 2} = x^{-14} \][/tex]
#### For the base y:
[tex]\[ (y^{-4})^2 = y^{-4 \cdot 2} = y^{-8} \][/tex]
Combining these results, we get:
[tex]\[ 4 \cdot x^{-14} \cdot y^{-8} = \frac{4}{x^{14} \cdot y^8} \][/tex]
Thus, the simplified form of the given expression is:
[tex]\[ \boxed{\frac{4}{x^{14} y^8}} \][/tex]