What is the volume of a rectangular prism that is [tex][tex]$4 ft$[/tex][/tex] by [tex][tex]$12 ft$[/tex][/tex] by [tex][tex]$6 ft$[/tex][/tex]?

A. [tex][tex]$205 ft^3$[/tex][/tex]
B. [tex][tex]$288 ft^3$[/tex][/tex]
C. [tex][tex]$324 ft^3$[/tex][/tex]
D. [tex][tex]$315 ft^3$[/tex][/tex]



Answer :

To find the volume of a rectangular prism, we need to use the formula:

[tex]\[ \text{Volume} = \text{length} \times \text{width} \times \text{height} \][/tex]

Here are the dimensions provided:
- Length: [tex]\( 4 \text{ ft} \)[/tex]
- Width: [tex]\( 12 \text{ ft} \)[/tex]
- Height: [tex]\( 6 \text{ ft} \)[/tex]

Substitute the given values into the formula:

[tex]\[ \text{Volume} = 4 \text{ ft} \times 12 \text{ ft} \times 6 \text{ ft} \][/tex]

This calculation yields:

[tex]\[ \text{Volume} = 288 \text{ ft}^3 \][/tex]

Therefore, the volume of the rectangular prism is:

[tex]\[ 288 \text{ ft}^3 \][/tex]

So, the correct answer is:

[tex]\[ \boxed{288 \text{ ft}^3} \][/tex]