Apply the Direct Comparison Test to determine if the following integral converges. (Do NOT evaluate the integral)

[tex]\[ \int_0^1 \frac{1}{x^2+\sqrt{x}} \, dx \][/tex]



Answer :

To determine if the integral

[tex]\[ \int_0^1 \frac{1}{x^2+\sqrt{x}} \, dx \][/tex]

converges without actually evaluating it, we can use the Direct Comparison Test. Here’s a detailed, step-by-step solution:

### Step 1: Identify and analyze the integrand
Given the function inside the integral is:

[tex]\[ f(x) = \frac{1}{x^2 + \sqrt{x}} \][/tex]

This function is continuous for [tex]\( x \)[/tex] in the interval [tex]\([0, 1]\)[/tex] except at [tex]\( x = 0 \)[/tex]. To apply the Direct Comparison Test, we seek a simpler function [tex]\(g(x)\)[/tex] such that [tex]\(f(x) \leq g(x)\)[/tex] and [tex]\(g(x)\)[/tex] is easier to integrate and analyze over the interval [tex]\([0, 1]\)[/tex].

### Step 2: Identify a suitable comparison function
We observe the behavior of [tex]\(x^2\)[/tex] and [tex]\(\sqrt{x}\)[/tex] on the interval [tex]\([0, 1]\)[/tex]:

1. For [tex]\( 0 \leq x < 1 \)[/tex], [tex]\(x^2\)[/tex] is always non-negative and thus [tex]\(\sqrt{x}\)[/tex] provides the dominant term in the denominator near [tex]\(x = 0\)[/tex].
2. We need a function [tex]\(g(x)\)[/tex] that is greater than or equal to [tex]\(\frac{1}{x^2 + \sqrt{x}}\)[/tex].

Let’s consider:

[tex]\[ g(x) = \frac{1}{\sqrt{x}} \][/tex]

since [tex]\(x^2 \geq 0\)[/tex] for [tex]\(x \in [0, 1]\)[/tex], it follows that:

[tex]\[ x^2 + \sqrt{x} \geq \sqrt{x} \][/tex]

Therefore,

[tex]\[ \frac{1}{x^2 + \sqrt{x}} \leq \frac{1}{\sqrt{x}} \][/tex]

for [tex]\(0 < x \leq 1\)[/tex].

### Step 3: Examine the comparison integral
We now evaluate whether the comparison integral converges:

[tex]\[ \int_0^1 \frac{1}{\sqrt{x}} \, dx \][/tex]

To integrate [tex]\(\frac{1}{\sqrt{x}}\)[/tex]:

[tex]\[ \int_0^1 \frac{1}{\sqrt{x}} \, dx = \int_0^1 x^{-\frac{1}{2}} \, dx \][/tex]

This simplifies to:

[tex]\[ \left[ 2x^{\frac{1}{2}} \right]_0^1 = 2 \left[ x^{\frac{1}{2}} \right]_0^1 = 2 \left( 1^{\frac{1}{2}} - 0^{\frac{1}{2}} \right) = 2(1) = 2 \][/tex]

Since the integral [tex]\(\int_0^1 \frac{1}{\sqrt{x}} \, dx\)[/tex] converges to a finite value, it provides an upper bound for [tex]\(\frac{1}{x^2 + \sqrt{x}}\)[/tex].

### Step 4: Apply the Direct Comparison Test
By the Direct Comparison Test:

- Since [tex]\( \frac{1}{x^2 + \sqrt{x}} \leq \frac{1}{\sqrt{x}} \)[/tex] for [tex]\(0 < x \leq 1\)[/tex], and
- The integral [tex]\(\int_0^1 \frac{1}{\sqrt{x}} \, dx\)[/tex] converges,

we can conclude that:

[tex]\[ \int_0^1 \frac{1}{x^2 + \sqrt{x}} \, dx \][/tex]

also converges.

Thus, based on the Direct Comparison Test, we have shown that the integral [tex]\(\int_0^1 \frac{1}{x^2 + \sqrt{x}} \, dx\)[/tex] converges.

Other Questions