Answer :
To find the total area of the national park, we'll follow these steps:
1. Determine the conversion factor: The scale given is 1 inch = 0.25 miles. This means for every inch on the map, it represents 0.25 miles in real life.
2. Convert the dimensions of the park from inches to miles:
- The map is 12 inches tall. Therefore, the real-life height of the park is:
[tex]\[ 12 \text{ inches} \times 0.25 \text{ miles/inch} = 3 \text{ miles} \][/tex]
- The map is 8 inches wide. Therefore, the real-life width of the park is:
[tex]\[ 8 \text{ inches} \times 0.25 \text{ miles/inch} = 2 \text{ miles} \][/tex]
3. Calculate the area of the park: The area [tex]\(A\)[/tex] of a rectangle is given by the formula:
[tex]\[ A = \text{height} \times \text{width} \][/tex]
Using the converted dimensions:
[tex]\[ A = 3 \text{ miles} \times 2 \text{ miles} = 6 \text{ square miles} \][/tex]
Therefore, the total area of the national park is:
[tex]\[ 6 \text{ square miles} \][/tex]
The correct answer is [tex]\(6 \text{ mi}^2\)[/tex].
1. Determine the conversion factor: The scale given is 1 inch = 0.25 miles. This means for every inch on the map, it represents 0.25 miles in real life.
2. Convert the dimensions of the park from inches to miles:
- The map is 12 inches tall. Therefore, the real-life height of the park is:
[tex]\[ 12 \text{ inches} \times 0.25 \text{ miles/inch} = 3 \text{ miles} \][/tex]
- The map is 8 inches wide. Therefore, the real-life width of the park is:
[tex]\[ 8 \text{ inches} \times 0.25 \text{ miles/inch} = 2 \text{ miles} \][/tex]
3. Calculate the area of the park: The area [tex]\(A\)[/tex] of a rectangle is given by the formula:
[tex]\[ A = \text{height} \times \text{width} \][/tex]
Using the converted dimensions:
[tex]\[ A = 3 \text{ miles} \times 2 \text{ miles} = 6 \text{ square miles} \][/tex]
Therefore, the total area of the national park is:
[tex]\[ 6 \text{ square miles} \][/tex]
The correct answer is [tex]\(6 \text{ mi}^2\)[/tex].