Calculate the surface area of a sphere with a diameter of 25 inches.

A. 8177.1 in [tex]^2[/tex]
B. 314.2 in [tex]^2[/tex]
C. 7854 in [tex]^2[/tex]
D. 1963.5 in [tex]^2[/tex]



Answer :

To calculate the surface area of a sphere with a given diameter, follow these steps:

1. Determine the Radius: The radius is half of the diameter.
[tex]\[ \text{Diameter} = 25 \text{ inches} \][/tex]
[tex]\[ \text{Radius} = \frac{\text{Diameter}}{2} = \frac{25}{2} = 12.5 \text{ inches} \][/tex]

2. Use the Formula for Surface Area of a Sphere: The formula for the surface area [tex]\( A \)[/tex] of a sphere is:
[tex]\[ A = 4 \pi r^2 \][/tex]
Where [tex]\( r \)[/tex] is the radius of the sphere.

3. Plug in the Radius:
[tex]\[ A = 4 \pi (12.5)^2 \][/tex]

4. Calculate the Surface Area: When you substitute the radius into the formula and calculate:
[tex]\[ A \approx 1963.5 \text{ square inches} \][/tex]

Therefore, the surface area of the sphere is [tex]\( 1963.5 \)[/tex] square inches.

So, the correct answer is:
[tex]\[ \boxed{1963.5 \text{ in}^2} \][/tex]