38. If [tex]E F=2 x-12[/tex], [tex]F G=3 x-15[/tex], and [tex]E G=23[/tex], find the values of [tex]x[/tex], [tex]E F[/tex], and [tex]F G[/tex].

A. [tex]x=10, E F=32, F G=45[/tex]
B. [tex]x=3, E F=8, F G=15[/tex]
C. [tex]x=10, E F=8, F G=15[/tex]
D. [tex]x=3, E F=-6, F G=-6[/tex]



Answer :

To solve this problem, we need to find the values of [tex]\( x \)[/tex], [tex]\( EF \)[/tex], and [tex]\( FG \)[/tex] given the equations [tex]\( EF = 2x - 12 \)[/tex], [tex]\( FG = 3x - 15 \)[/tex], and [tex]\( EG = 23 \)[/tex].

Let's break it down step by step:

1. Write down the given equations:
[tex]\[ EF = 2x - 12 \][/tex]
[tex]\[ FG = 3x - 15 \][/tex]
[tex]\[ EG = 23 \][/tex]

2. Express the length [tex]\( EG \)[/tex] in terms of [tex]\( x \)[/tex]:
Since [tex]\( E \)[/tex], [tex]\( F \)[/tex], and [tex]\( G \)[/tex] are collinear points, [tex]\( EG \)[/tex] is the sum of [tex]\( EF \)[/tex] and [tex]\( FG \)[/tex]:
[tex]\[ EG = EF + FG \][/tex]
Substituting the given expressions for [tex]\( EF \)[/tex] and [tex]\( FG \)[/tex]:
[tex]\[ 23 = (2x - 12) + (3x - 15) \][/tex]

3. Simplify the equation:
Combine like terms on the right-hand side:
[tex]\[ 23 = 2x - 12 + 3x - 15 \][/tex]
[tex]\[ 23 = 5x - 27 \][/tex]

4. Solve for [tex]\( x \)[/tex]:
Isolate [tex]\( x \)[/tex] by adding 27 to both sides of the equation:
[tex]\[ 23 + 27 = 5x \][/tex]
[tex]\[ 50 = 5x \][/tex]
Divide by 5:
[tex]\[ x = 10 \][/tex]

5. Calculate [tex]\( EF \)[/tex]:
Substitute [tex]\( x = 10 \)[/tex] back into the equation for [tex]\( EF \)[/tex]:
[tex]\[ EF = 2x - 12 \][/tex]
[tex]\[ EF = 2(10) - 12 \][/tex]
[tex]\[ EF = 20 - 12 \][/tex]
[tex]\[ EF = 8 \][/tex]

6. Calculate [tex]\( FG \)[/tex]:
Substitute [tex]\( x = 10 \)[/tex] back into the equation for [tex]\( FG \)[/tex]:
[tex]\[ FG = 3x - 15 \][/tex]
[tex]\[ FG = 3(10) - 15 \][/tex]
[tex]\[ FG = 30 - 15 \][/tex]
[tex]\[ FG = 15 \][/tex]

Therefore, the values are:

- [tex]\( x = 10 \)[/tex]
- [tex]\( EF = 8 \)[/tex]
- [tex]\( FG = 15 \)[/tex]

So, the correct answer is:
[tex]\[ x=10, EF=8, FG=15 \][/tex]