Sure, let's solve this step-by-step using the Substitution Property of Equality.
1. Given Information:
- [tex]\( L M = 7 \)[/tex]
- [tex]\( E R + L M = N P \)[/tex]
2. Substitution:
- From the first piece of given information, we know the value of [tex]\( L M \)[/tex]. [tex]\( L M \)[/tex] is equal to 7.
- Now, we substitute [tex]\( L M \)[/tex] with its value (7) in the equation [tex]\( E R + L M = N P \)[/tex].
3. Result:
- Substitute [tex]\( L M \)[/tex] in [tex]\( E R + L M = N P \)[/tex] to get: [tex]\( E R + 7 = N P \)[/tex].
Since we have now substituted [tex]\( L M \)[/tex] with 7, we can directly conclude that:
[tex]\[ E R + 7 = N P \][/tex]
Therefore, the answer to the question "if [tex]\( L M=7 \)[/tex], and [tex]\( E R+L M=N P \)[/tex], then ____ = [tex]\( N P \)[/tex]" is:
[tex]\[ E R + 7 \][/tex]
Hence, the correct choice is:
[tex]\[ E R + 7 \][/tex]