The Substitution Property of Equality states that if [tex][tex]$L M=7$[/tex][/tex], and [tex][tex]$E R+L M=N P$[/tex][/tex], then

A. [tex][tex]$E R+7 = N P$[/tex][/tex]
B. [tex][tex]$E R+L M$[/tex][/tex]
C. 7
D. [tex][tex]$L M+7$[/tex][/tex]



Answer :

Sure, let's solve this step-by-step using the Substitution Property of Equality.

1. Given Information:
- [tex]\( L M = 7 \)[/tex]
- [tex]\( E R + L M = N P \)[/tex]

2. Substitution:
- From the first piece of given information, we know the value of [tex]\( L M \)[/tex]. [tex]\( L M \)[/tex] is equal to 7.
- Now, we substitute [tex]\( L M \)[/tex] with its value (7) in the equation [tex]\( E R + L M = N P \)[/tex].

3. Result:
- Substitute [tex]\( L M \)[/tex] in [tex]\( E R + L M = N P \)[/tex] to get: [tex]\( E R + 7 = N P \)[/tex].

Since we have now substituted [tex]\( L M \)[/tex] with 7, we can directly conclude that:

[tex]\[ E R + 7 = N P \][/tex]

Therefore, the answer to the question "if [tex]\( L M=7 \)[/tex], and [tex]\( E R+L M=N P \)[/tex], then ____ = [tex]\( N P \)[/tex]" is:

[tex]\[ E R + 7 \][/tex]

Hence, the correct choice is:
[tex]\[ E R + 7 \][/tex]