What is the following sum? Assume [tex][tex]$x \geq 0$[/tex][/tex] and [tex][tex]$y \geq 0$[/tex][/tex].

[tex]\[ \sqrt{x^2 y^3} + 2 \sqrt{x^3 y^4} + x y \sqrt{y} \][/tex]

A. [tex][tex]$x^2 y^2 \sqrt{y} - 2 x y^2 \sqrt{x}$[/tex][/tex]
B. [tex][tex]$2 x y \sqrt{y} + 2 x y^2 \sqrt{x}$[/tex][/tex]
C. [tex][tex]$4 x y \sqrt{x^5 y^8}$[/tex][/tex]
D. [tex][tex]$2 x y \sqrt{x y}$[/tex][/tex]



Answer :

To solve this question, we will separately simplify each provided mathematical expression, then combine the simplified results.

### Expression 1
[tex]\[ \sqrt{x^2 y^3} + 2 \sqrt{x^3 y^4} + x y \sqrt{y} \][/tex]

First, we simplify each term individually:

1. [tex]\(\sqrt{x^2 y^3}\)[/tex]:
[tex]\[ \sqrt{x^2 y^3} = x y^{3/2} \][/tex]

2. [tex]\(2 \sqrt{x^3 y^4}\)[/tex]:
[tex]\[ 2 \sqrt{x^3 y^4} = 2 x^{3/2} y^2 \][/tex]

3. [tex]\(x y \sqrt{y}\)[/tex]:
[tex]\[ x y \sqrt{y} = x y \cdot y^{1/2} = x y^{3/2} \][/tex]

Combining these results:
[tex]\[ \sqrt{x^2 y^3} + 2 \sqrt{x^3 y^4} + x y \sqrt{y} = x y^{3/2} + 2 x^{3/2} y^2 + x y^{3/2} \][/tex]

Combine like terms:
[tex]\[ 2 x y^{3/2} + 2 x^{3/2} y^2 \][/tex]

### Expression 2
[tex]\[ x^2 y^2 \sqrt{y} - 2 x y^2 \sqrt{x} \][/tex]

We simplify each term individually:

1. [tex]\(x^2 y^2 \sqrt{y}\)[/tex]:
[tex]\[ x^2 y^2 \sqrt{y} = x^2 y^{5/2} \][/tex]

2. [tex]\(-2 x y^2 \sqrt{x}\)[/tex]:
[tex]\[ -2 x y^2 \sqrt{x} = -2 x^{3/2} y^2 \][/tex]

Combine these results:
[tex]\[ x^2 y^{5/2} - 2 x^{3/2} y^2 \][/tex]

### Expression 3
[tex]\[ 2 x y \sqrt{y} + 2 x y^2 \sqrt{x} \][/tex]

We simplify each term individually:

1. [tex]\(2 x y \sqrt{y}\)[/tex]:
[tex]\[ 2 x y \sqrt{y} = 2 x y^{3/2} \][/tex]

2. [tex]\(2 x y^2 \sqrt{x}\)[/tex]:
[tex]\[ 2 x y^2 \sqrt{x} = 2 x^{3/2} y^2 \][/tex]

Combine these results:
[tex]\[ 2 x y^{3/2} + 2 x^{3/2} y^2 \][/tex]

### Expression 4
[tex]\[ 4 x y \sqrt{x^5 y^8} \][/tex]

We simplify the term:
[tex]\[ 4 x y \sqrt{x^5 y^8} = 4 x y \cdot x^{5/2} y^4 = 4 x^{7/2} y^5 \][/tex]

### Expression 5
[tex]\[ 2 x y \sqrt{x y} \][/tex]

We simplify the term:
[tex]\[ 2 x y \sqrt{x y} = 2 x y \cdot \sqrt{x} \cdot \sqrt{y} = 2 x y \cdot x^{1/2} y^{1/2} = 2 x^{3/2} y^{3/2} \][/tex]

### Combining All Simplified Expressions

We sum the simplified results of each expression:
[tex]\[ (2 x^{3/2} y^2 + 2 x y^{3/2}) + (x^2 y^{5/2} - 2 x^{3/2} y^2) + (2 x^{3/2} y^2 + 2 x y^{3/2}) + 4 x^{7/2} y^5 + 2 x^{3/2} y^{3/2} \][/tex]

Combining all like terms, we get:
[tex]\[ 2 x y^{3/2} + x^2 y^{5/2} + 2 x y^{3/2} + 4 x^{7/2} y^5 + 2 x^{3/2} y^{3/2} \][/tex]

Resulting in:
[tex]\[ 2 x y^{3/2} + 2 x y^{3/2} + 2 x^{3/2} y^{2} + x^2 y^{5/2} + 4 x^{7/2} y^{5} + 2 x^{3/2} y^{3/2} \][/tex]
[tex]\[ = 4 x y^{3/2} + 4 x^{3/2} y^2 + x^2 y^{5/2} + 4 x^{7/2} y^5 + 2 x^{3/2} y^{3/2} \][/tex]

So, the final simplified result is:
[tex]\[ 4 x y^{3/2} + x^2 y^{5/2} + 4 x^{7/2} y^5 + 2 x^{3/2} y^{3/2} + 2 x^{3/2} y^2 \][/tex]