Given [tex][tex]$h(x)$[/tex][/tex], evaluate [tex][tex]$h(-1)$[/tex][/tex].

[tex]\[
\begin{array}{c}
h(x) = 3x^2 - 4x + 1 \\
h(-1) = [?]
\end{array}
\][/tex]

Simplify your answer.



Answer :

To evaluate [tex]\( h(-1) \)[/tex] for the function [tex]\( h(x) = 3x^2 - 4x + 1 \)[/tex], follow these steps:

1. Substitute [tex]\(-1\)[/tex] for [tex]\(x\)[/tex] in the expression [tex]\( h(x) \)[/tex]:
[tex]\[ h(-1) = 3(-1)^2 - 4(-1) + 1 \][/tex]

2. Evaluate [tex]\((-1)^2\)[/tex]:
[tex]\[ (-1)^2 = 1 \][/tex]
So the expression becomes:
[tex]\[ h(-1) = 3(1) - 4(-1) + 1 \][/tex]

3. Multiply the constants:
[tex]\[ 3(1) = 3 \][/tex]
The expression now is:
[tex]\[ h(-1) = 3 - 4(-1) + 1 \][/tex]

4. Multiply [tex]\(-4\)[/tex] by [tex]\(-1\)[/tex]:
[tex]\[ -4(-1) = 4 \][/tex]
Now the expression simplifies to:
[tex]\[ h(-1) = 3 + 4 + 1 \][/tex]

5. Add the constants together:
[tex]\[ 3 + 4 + 1 = 8 \][/tex]

Therefore, the value of [tex]\( h(-1) \)[/tex] is:
[tex]\[ h(-1) = 8 \][/tex]