Given [tex]\( f(x) \)[/tex], evaluate [tex]\( f(6) \)[/tex].

[tex]\[
\begin{array}{c}
f(x) = \frac{2}{3} x^2 + \frac{1}{2} x - 2 \\
f(6) = [?]
\end{array}
\][/tex]

Simplify your answer.



Answer :

Alright, let's evaluate the function [tex]\( f(x) = \frac{2}{3} x^2 + \frac{1}{2} x - 2 \)[/tex] at [tex]\( x = 6 \)[/tex].

1. Substitute [tex]\( x = 6 \)[/tex] into the function:

So, we have:
[tex]\[ f(6) = \frac{2}{3} (6)^2 + \frac{1}{2} (6) - 2 \][/tex]

2. Calculate [tex]\( (6)^2 \)[/tex]:

[tex]\[ 6^2 = 36 \][/tex]

3. Multiply [tex]\(\frac{2}{3}\)[/tex] by [tex]\( 36 \)[/tex]:

[tex]\[ \frac{2}{3} \times 36 = 24 \][/tex]

4. Multiply [tex]\(\frac{1}{2}\)[/tex] by [tex]\( 6 \)[/tex]:

[tex]\[ \frac{1}{2} \times 6 = 3 \][/tex]

5. Combine these results:

[tex]\[ f(6) = 24 + 3 - 2 \][/tex]

6. Perform the arithmetic:

[tex]\[ 24 + 3 = 27 \][/tex]
[tex]\[ 27 - 2 = 25 \][/tex]

So, the value of [tex]\( f(6) \)[/tex] is:

[tex]\[ \boxed{25} \][/tex]