Let [tex][tex]$x$[/tex][/tex] be the length of one of the equal sides.

Which equation models the problem?

A. [tex][tex]$x + x + (5 - 2x) = 23$[/tex][/tex]
B. [tex][tex]$x + x + (2x - 5) = 23$[/tex][/tex]
C. [tex][tex]$x + x + (2x + 5) = 23$[/tex][/tex]
D. [tex][tex]$x + (2x - 5) + (2x - 5) = 23$[/tex][/tex]



Answer :

To determine which equation models the problem correctly, let's compare each equation to see if it satisfies the condition that the sum of the three sides equals 23.

### Given Options:

1. [tex]\(x + x + (5 - 2x) = 23\)[/tex]
2. [tex]\(x + x + (2x - 5) = 23\)[/tex]
3. [tex]\(x + x + (2x + 5) = 23\)[/tex]
4. [tex]\(x + (2x - 5) + (2x - 5) = 23\)[/tex]

We'll analyze these equations one by one.

### Option 1: [tex]\(x + x + (5 - 2x) = 23\)[/tex]

Simplifying this equation:
[tex]\[x + x + (5 - 2x) = 23\][/tex]
[tex]\[2x + 5 - 2x = 23\][/tex]
[tex]\[5 = 23\][/tex]

This is not correct, since 5 does not equal 23. Therefore, this equation does not model the problem.

### Option 2: [tex]\(x + x + (2x - 5) = 23\)[/tex]

Simplifying this equation:
[tex]\[ x + x + (2x - 5) = 23 \][/tex]
[tex]\[ 2x + 2x - 5 = 23 \][/tex]
[tex]\[ 4x - 5 = 23 \][/tex]

This equation is valid and simplifies to [tex]\(4x - 5 = 23\)[/tex].

### Option 3: [tex]\(x + x + (2x + 5) = 23\)[/tex]

Simplifying this equation:
[tex]\[ x + x + (2x + 5) = 23 \][/tex]
[tex]\[ 2x + 2x + 5 = 23 \][/tex]
[tex]\[ 4x + 5 = 23 \][/tex]

This equation is valid and simplifies to [tex]\(4x + 5 = 23\)[/tex].

### Option 4: [tex]\(x + (2x - 5) + (2x - 5) = 23\)[/tex]

Simplifying this equation:
[tex]\[ x + (2x - 5) + (2x - 5) = 23 \][/tex]
[tex]\[ x + 2x - 5 + 2x - 5 = 23 \][/tex]
[tex]\[ x + 4x - 10 = 23 \][/tex]
[tex]\[ 5x - 10 = 23 \][/tex]

This equation is valid and simplifies to [tex]\(5x - 10 = 23\)[/tex].

### Summary

Based on the analysis:

- Option 1 simplifies to [tex]\(5 = 23\)[/tex], which is incorrect.
- Option 2 simplifies to [tex]\(4x - 5 = 23\)[/tex].
- Option 3 simplifies to [tex]\(4x + 5 = 23\)[/tex].
- Option 4 simplifies to [tex]\(5x - 10 = 23\)[/tex].

Therefore, the correct equations that can model the problem are:
[tex]\(x + x + (2x - 5) = 23\)[/tex],
[tex]\(x + x + (2x + 5) = 23\)[/tex], and
[tex]\(x + (2x - 5) + (2x - 5) = 23\)[/tex].