A sample of a phosphorous oxide compound is found to contain [tex][tex]$43.6 \%$[/tex][/tex] phosphorous and [tex][tex]$56.4 \%$[/tex][/tex] oxygen. What is its empirical formula?

A. [tex][tex]$P _4 O _{10}$[/tex][/tex]
B. [tex][tex]$P _2 O _3$[/tex][/tex]
C. [tex][tex]$P _4 O _6$[/tex][/tex]
D. [tex][tex]$P _2 O _5$[/tex][/tex]



Answer :

To determine the empirical formula of the compound given the percentages of phosphorus and oxygen, follow these steps:

1. Convert percentages to masses: Assume 100 grams of the compound, so you have:
- 43.6 grams of phosphorus (P)
- 56.4 grams of oxygen (O)

2. Convert masses to moles:
- The atomic mass of phosphorus (P) is approximately 30.97 g/mol.
- The atomic mass of oxygen (O) is approximately 16.00 g/mol.

Calculate the moles of each element:
[tex]\[ \text{Moles of P} = \frac{43.6 \text{ grams}}{30.97 \text{ g/mol}} \approx 1.41 \text{ moles} \][/tex]
[tex]\[ \text{Moles of O} = \frac{56.4 \text{ grams}}{16.00 \text{ g/mol}} = 3.525 \text{ moles} \][/tex]

3. Find the simplest mole ratio:
- Divide each mole value by the smallest number of moles calculated:
[tex]\[ \text{Ratio of P} = \frac{1.41}{1.41} \approx 1 \][/tex]
[tex]\[ \text{Ratio of O} = \frac{3.525}{1.41} \approx 2.5 \][/tex]

4. Simplify the ratio to small whole numbers:
The ratio of phosphorus to oxygen is approximately 1:2.5. To convert this into a whole number ratio, multiply both values by 2:
[tex]\[ \text{Ratio of P} = 1 \times 2 = 2 \][/tex]
[tex]\[ \text{Ratio of O} = 2.5 \times 2 = 5 \][/tex]

Thus, the simplest whole number ratio is 2 phosphorus atoms to 5 oxygen atoms.

5. Determine the empirical formula:
Using the simplest whole number ratio, we find that the empirical formula of the compound is:
[tex]\[ \text{Empirical formula} = P_2O_5 \][/tex]

So, the empirical formula for the compound is [tex]\( P_2O_5 \)[/tex].