Solve the system using elimination.

[tex]\[
\begin{array}{c}
4y + x = -17 \\
-2y + 2x = 16 \\
([?], \square)
\end{array}
\][/tex]



Answer :

To solve the given system of linear equations using the elimination method, we first rewrite the system of equations clearly:

[tex]\[ \begin{cases} 4y + x = -17 \\ -2y + 2x = 16 \end{cases} \][/tex]

Step 1: Eliminate one of the variables

We can start by eliminating [tex]\(x\)[/tex]. To do this, we need to manipulate the equations so that adding or subtracting them will result in one of the variables canceling out.

Given our equations:
1. [tex]\( 4y + x = -17 \)[/tex]
2. [tex]\(-2y + 2x = 16 \)[/tex]

Let's multiply the first equation by 2 to align the coefficients of [tex]\(x\)[/tex]:

[tex]\[ 2(4y + x) = 2(-17) \][/tex]

Which gives us:

[tex]\[ 8y + 2x = -34 \][/tex]

Now, our system of equations is:

[tex]\[ \begin{cases} 8y + 2x = -34 \\ -2y + 2x = 16 \end{cases} \][/tex]

Next, we subtract the second equation from the first to eliminate [tex]\(x\)[/tex]:

[tex]\[ (8y + 2x) - (-2y + 2x) = -34 - 16 \][/tex]

Simplifying this, we get:

[tex]\[ 8y + 2x + 2y - 2x = -34 - 16 \][/tex]

[tex]\[ 10y = -50 \][/tex]

Now, divide both sides by 10 to solve for [tex]\(y\)[/tex]:

[tex]\[ y = \frac{-50}{10} = -5 \][/tex]

Step 2: Substitute [tex]\(y\)[/tex] back into one of the original equations to solve for [tex]\(x\)[/tex]

Let's substitute [tex]\(y = -5\)[/tex] into the first equation:

[tex]\[ 4(-5) + x = -17 \][/tex]

Simplify and solve for [tex]\(x\)[/tex]:

[tex]\[ -20 + x = -17 \][/tex]

Add 20 to both sides:

[tex]\[ x = -17 + 20 \][/tex]

[tex]\[ x = 3 \][/tex]

Therefore, the solution to the system of equations is:

[tex]\[ (x, y) = (3, -5) \][/tex]

Let's write the solution in the form given in the problem:

[tex]\[ \boxed{(-5, 3)} \][/tex]

So, the solution to the system [tex]\( \begin{cases} 4y + x = -17 \\ -2y + 2x = 16 \end{cases} \)[/tex] is [tex]\( x = 3 \)[/tex] and [tex]\( y = -5 \)[/tex].