Answered

Calculate the energy transferred given the following:

[tex]\[
\begin{array}{l}
C-P=5 \text{ hours }=5 \times 60 \times 60=18,000 \text{ seconds}, \\
F-P=E / T \\
1-1.5 \times 10^9=E / 18,000 \\
C_{-1}=15 \times 110 \times 13000=2.7 \times 10^{13} \\
-2.7 \times 10^{13} \text{ J}
\end{array}
\][/tex]

The electrical generators can provide [tex][tex]$2.5 \times 10^{6} W$[/tex][/tex] of power for a maximum of 5 hours. Calculate the energy transferred.



Answer :

To calculate the energy transferred by the generator, follow these steps:

1. Understand the given data:
- Power ([tex]\(P\)[/tex]) = [tex]\(2.5 \times 10^6\)[/tex] watts
- Time ([tex]\(t\)[/tex]) = 5 hours

2. Convert the time from hours to seconds:
[tex]\[ 5 \text{ hours} = 5 \times 60 \times 60 = 18000 \text{ seconds} \][/tex]

3. Use the formula for energy transferred:
- Energy transferred ([tex]\(E\)[/tex]) is given by the formula:
[tex]\[ E = P \times t \][/tex]

4. Substitute the given values into the formula:
- Power ([tex]\(P\)[/tex]) = [tex]\(2.5 \times 10^6\)[/tex] watts
- Time ([tex]\(t\)[/tex]) = 18000 seconds
[tex]\[ E = 2.5 \times 10^6 \text{ W} \times 18000 \text{ s} \][/tex]

5. Calculate the energy transferred:
[tex]\[ E = 2.5 \times 10^6 \times 18000 = 45000000000 \text{ joules} \][/tex]

So, the energy transferred by the generator is [tex]\(45,000,000,000\)[/tex] joules or [tex]\(4.5 \times 10^{10}\)[/tex] joules.