Answered

Calculate the force, in [tex][tex]$N$[/tex][/tex], that a brick exerts on a table given the following information:

The pressure exerted on a table by a brick is [tex][tex]$240 \, N/m^2$[/tex][/tex] and the area of the base of the brick is [tex][tex]$0.03 \, m^2$[/tex][/tex].

[tex]\[ \text{pressure} = \frac{\text{force}}{\text{area}} \][/tex]

If your answer is a decimal, give it to 1 d.p.



Answer :

To find the force that the brick exerts on the table, we need to use the formula for pressure:

[tex]\[ \text{pressure} = \frac{\text{force}}{\text{area}} \][/tex]

We can rearrange this formula to solve for force:

[tex]\[ \text{force} = \text{pressure} \times \text{area} \][/tex]

Given:
- Pressure [tex]\( \text{pressure} = 240 \, \text{N/m}^2 \)[/tex]
- Area [tex]\( \text{area} = 0.03 \, \text{m}^2 \)[/tex]

Substitute the given values into the equation:

[tex]\[ \text{force} = 240 \, \text{N/m}^2 \times 0.03 \, \text{m}^2 \][/tex]

Perform the multiplication:

[tex]\[ \text{force} = 7.2 \, \text{N} \][/tex]

So, the force that the brick exerts on the table is [tex]\( 7.2 \, \text{N} \)[/tex].

And since the problem specifies to give the answer to one decimal place, our final answer is:

[tex]\[ 7.2 \, \text{N} \][/tex]