To find the force that the brick exerts on the table, we need to use the formula for pressure:
[tex]\[
\text{pressure} = \frac{\text{force}}{\text{area}}
\][/tex]
We can rearrange this formula to solve for force:
[tex]\[
\text{force} = \text{pressure} \times \text{area}
\][/tex]
Given:
- Pressure [tex]\( \text{pressure} = 240 \, \text{N/m}^2 \)[/tex]
- Area [tex]\( \text{area} = 0.03 \, \text{m}^2 \)[/tex]
Substitute the given values into the equation:
[tex]\[
\text{force} = 240 \, \text{N/m}^2 \times 0.03 \, \text{m}^2
\][/tex]
Perform the multiplication:
[tex]\[
\text{force} = 7.2 \, \text{N}
\][/tex]
So, the force that the brick exerts on the table is [tex]\( 7.2 \, \text{N} \)[/tex].
And since the problem specifies to give the answer to one decimal place, our final answer is:
[tex]\[
7.2 \, \text{N}
\][/tex]