Select the correct answer.

What is the value of this expression if [tex][tex]$h=8, j=-1$[/tex][/tex], and [tex][tex]$k=-12$[/tex][/tex]?

[tex]\[ \frac{j^3 k}{h^0} \][/tex]

A. 12
B. -12
C. [tex][tex]$\frac{3}{2}$[/tex][/tex]
D. 36



Answer :

To find the value of the expression [tex]\(\frac{j^3 k}{h^0}\)[/tex], we need to follow these steps:

1. Evaluate [tex]\(j^3\)[/tex]:
- Given [tex]\(j = -1\)[/tex], we calculate [tex]\(j^3\)[/tex].
[tex]\[ j^3 = (-1)^3 = -1 \][/tex]

2. Multiply [tex]\(j^3\)[/tex] by [tex]\(k\)[/tex]:
- Given [tex]\(k = -12\)[/tex], we use the result from step 1.
[tex]\[ j^3 \cdot k = (-1) \cdot (-12) = 12 \][/tex]

3. Evaluate [tex]\(h^0\)[/tex]:
- Given [tex]\(h = 8\)[/tex], recall that any number raised to the power of 0 is 1.
[tex]\[ h^0 = 1 \][/tex]

4. Divide the result from step 2 by the result from step 3:
[tex]\[ \frac{j^3 \cdot k}{h^0} = \frac{12}{1} = 12 \][/tex]

Therefore, the value of the expression [tex]\(\frac{j^3 k}{h^0}\)[/tex] is 12.

The correct answer is:
A. 12