To find the value of the expression [tex]\(\frac{j^3 k}{h^0}\)[/tex], we need to follow these steps:
1. Evaluate [tex]\(j^3\)[/tex]:
- Given [tex]\(j = -1\)[/tex], we calculate [tex]\(j^3\)[/tex].
[tex]\[
j^3 = (-1)^3 = -1
\][/tex]
2. Multiply [tex]\(j^3\)[/tex] by [tex]\(k\)[/tex]:
- Given [tex]\(k = -12\)[/tex], we use the result from step 1.
[tex]\[
j^3 \cdot k = (-1) \cdot (-12) = 12
\][/tex]
3. Evaluate [tex]\(h^0\)[/tex]:
- Given [tex]\(h = 8\)[/tex], recall that any number raised to the power of 0 is 1.
[tex]\[
h^0 = 1
\][/tex]
4. Divide the result from step 2 by the result from step 3:
[tex]\[
\frac{j^3 \cdot k}{h^0} = \frac{12}{1} = 12
\][/tex]
Therefore, the value of the expression [tex]\(\frac{j^3 k}{h^0}\)[/tex] is 12.
The correct answer is:
A. 12