Consider this expression:
[tex]\[
\left|m^2-7\right|+n^2
\][/tex]

When [tex][tex]$m=-2$[/tex][/tex] and [tex][tex]$n=5$[/tex][/tex], the value of the expression is [tex][tex]$\square$[/tex][/tex]



Answer :

Let's solve the given expression step-by-step:

Given the expression:
[tex]\[ \left|m^2 - 7\right| + n^2 \][/tex]
and the values [tex]\( m = -2 \)[/tex] and [tex]\( n = 5 \)[/tex].

1. Calculate [tex]\( m^2 \)[/tex]:
[tex]\[ m^2 = (-2)^2 = 4 \][/tex]

2. Subtract 7 from [tex]\( m^2 \)[/tex]:
[tex]\[ m^2 - 7 = 4 - 7 = -3 \][/tex]

3. Take the absolute value:
[tex]\[ \left| -3 \right| = 3 \][/tex]

4. Calculate [tex]\( n^2 \)[/tex]:
[tex]\[ n^2 = 5^2 = 25 \][/tex]

5. Add the absolute value to [tex]\( n^2 \)[/tex]:
[tex]\[ 3 + 25 = 28 \][/tex]

Thus, the value of the expression when [tex]\( m = -2 \)[/tex] and [tex]\( n = 5 \)[/tex] is [tex]\( 28 \)[/tex].