Write [tex][tex]$\frac{12}{\sqrt{2}}+\sqrt{18}$[/tex][/tex] in the form [tex][tex]$b \sqrt{2}$[/tex][/tex], where [tex][tex]$b$[/tex][/tex] is an integer.



Answer :

To simplify the expression [tex]\(\frac{12}{\sqrt{2}}+\sqrt{18}\)[/tex] into the form [tex]\(b \sqrt{2}\)[/tex], where [tex]\(b\)[/tex] is an integer, we can follow these steps:

1. Rationalize the denominator of [tex]\(\frac{12}{\sqrt{2}}\)[/tex]:

To simplify [tex]\(\frac{12}{\sqrt{2}}\)[/tex], we multiply both the numerator and denominator by [tex]\(\sqrt{2}\)[/tex] to rationalize the denominator:

[tex]\[ \frac{12}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{12\sqrt{2}}{2} = 6\sqrt{2} \][/tex]

2. Simplify [tex]\(\sqrt{18}\)[/tex]:

The square root of 18 can be broken down into its prime factors:

[tex]\[ \sqrt{18} = \sqrt{2 \times 9} = \sqrt{2} \times \sqrt{9} = \sqrt{2} \times 3 = 3\sqrt{2} \][/tex]

3. Add the simplified terms together:

Combining the two parts we have:

[tex]\[ 6\sqrt{2} + 3\sqrt{2} \][/tex]

Since both terms have [tex]\(\sqrt{2}\)[/tex] as a common factor, we can add the coefficients:

[tex]\[ 6\sqrt{2} + 3\sqrt{2} = (6 + 3)\sqrt{2} = 9\sqrt{2} \][/tex]

Hence, the expression [tex]\(\frac{12}{\sqrt{2}}+\sqrt{18}\)[/tex] simplifies to [tex]\(9\sqrt{2}\)[/tex]. Therefore, [tex]\(b\)[/tex] is [tex]\(9\)[/tex].