Which answer describes the transformation of [tex][tex]$f(x)=x^2-1$[/tex][/tex] to [tex][tex]$g(x)=(x-1)^2-1$[/tex][/tex]?

A. a horizontal translation 1 unit to the right
B. a vertical translation 1 unit up
C. a vertical translation 1 unit down
D. a horizontal translation 1 unit to the left



Answer :

To determine the transformation that takes [tex]\( f(x) = x^2 - 1 \)[/tex] to [tex]\( g(x) = (x-1)^2 - 1 \)[/tex], we need to analyze how the form of the function changes.

1. Start with the original function:
[tex]\[ f(x) = x^2 - 1 \][/tex]

2. Now, consider the transformed function:
[tex]\[ g(x) = (x-1)^2 - 1 \][/tex]

3. Notice that the term [tex]\((x-1)\)[/tex] inside the square in [tex]\(g(x)\)[/tex] indicates a horizontal shift. To identify the direction of this shift, recall that:
- [tex]\( f(x+h) \)[/tex] represents a horizontal translation [tex]\( h \)[/tex] units to the left.
- [tex]\( f(x-h) \)[/tex] represents a horizontal translation [tex]\( h \)[/tex] units to the right.

4. The expression [tex]\((x-1)\)[/tex] corresponds to [tex]\( x \)[/tex] having 1 subtracted from it, which matches the format [tex]\( x-h \)[/tex].
[tex]\[ (x-1) \Rightarrow x - 1 \][/tex]

5. Therefore, the transformation [tex]\( g(x) = (x-1)^2 - 1 \)[/tex] implies a horizontal shift 1 unit to the right of the [tex]\( x \)[/tex]-value in the argument of the original function [tex]\( f(x) \)[/tex].

6. The rest of the function, [tex]\(- 1\)[/tex], remains unchanged, indicating no vertical shift occurs.

Thus, the correct answer that describes the transformation of [tex]\( f(x) = x^2 - 1 \)[/tex] to [tex]\( g(x) = (x-1)^2 - 1 \)[/tex] is:
[tex]\[ \text{a horizontal translation 1 unit to the right} \][/tex]