Which line is parallel to [tex][tex]$y=-(3 / 5) x + 1 / 6$[/tex][/tex]?

A. [tex][tex]$y = -\frac{3}{5} x - \frac{1}{4}$[/tex][/tex]
B. [tex][tex]$y = \frac{3}{5} x - 4$[/tex][/tex]
C. [tex][tex]$y = \frac{5}{3} x + 4$[/tex][/tex]
D. [tex][tex]$y = -\frac{5}{3} x + \frac{1}{4}$[/tex][/tex]



Answer :

To determine which line is parallel to the given equation [tex]\( y = -\frac{3}{5}x + \frac{1}{6} \)[/tex], we need to identify the slope of the line and then find another line from the given options that has the same slope.

The general form of a linear equation in slope-intercept form is:
[tex]\[ y = mx + b \][/tex]
where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the y-intercept.

1. For the given line [tex]\( y = -\frac{3}{5}x + \frac{1}{6} \)[/tex]:
- The slope [tex]\( m \)[/tex] is [tex]\( -\frac{3}{5} \)[/tex].

Now let's examine the slopes of the lines given in the options:

2. [tex]\( y = -\frac{3}{5}x - \frac{1}{4} \)[/tex]:
- The slope [tex]\( m \)[/tex] is [tex]\( -\frac{3}{5} \)[/tex].

3. [tex]\( y = \frac{3}{5}x - 4 \)[/tex]:
- The slope [tex]\( m \)[/tex] is [tex]\( \frac{3}{5} \)[/tex].

4. [tex]\( y = \frac{5}{3}x + 4 \)[/tex]:
- The slope [tex]\( m \)[/tex] is [tex]\( \frac{5}{3} \)[/tex].

5. [tex]\( y = -\frac{5}{3}x + \frac{1}{4} \)[/tex]:
- The slope [tex]\( m \)[/tex] is [tex]\( -\frac{5}{3} \)[/tex].

Two lines are parallel if they have identical slopes. Comparing the slopes, we can clearly see that the line:
[tex]\[ y = -\frac{3}{5}x - \frac{1}{4} \][/tex]
has the same slope ([tex]\( -\frac{3}{5} \)[/tex]) as the given line ([tex]\( y = -\frac{3}{5}x + \frac{1}{6} \)[/tex]).

Therefore, the line that is parallel to [tex]\( y = -\frac{3}{5}x + \frac{1}{6} \)[/tex] is:
[tex]\[ y = -\frac{3}{5}x - \frac{1}{4} \][/tex]