Answer :
Sure, let's break this down step by step.
1. Calculate the Value of [tex]\(\sqrt{\frac{1}{2}}\)[/tex]:
- Firstly, [tex]\(\frac{1}{2}\)[/tex] is a simple fraction that evaluates to 0.5.
- Taking the square root of 0.5, we have:
[tex]\[ \sqrt{0.5} \approx 0.7071067811865476 \][/tex]
2. Determine the Value of [tex]\(B\)[/tex]:
- In this problem, the value of [tex]\(B\)[/tex] is not specified, so we can assume it's 0 for simplicity.
3. Add [tex]\(\sqrt{\frac{1}{2}}\)[/tex], [tex]\(B\)[/tex], and 9:
- Now, sum the values:
[tex]\[ 0.7071067811865476 + 0 + 9 \][/tex]
4. Simplify the Sum:
- Adding these together, we get:
[tex]\[ 0.7071067811865476 + 9 = 9.707106781186548 \][/tex]
Hence, the detailed step-by-step result of evaluating [tex]\(\sqrt{\frac{1}{2}} + B + 9\)[/tex] is:
[tex]\[ \sqrt{\frac{1}{2}} \approx 0.7071067811865476 \][/tex]
[tex]\[ \sqrt{\frac{1}{2}} + B + 9 \approx 9.707106781186548 \][/tex]
These are the values obtained for [tex]\(\sqrt{\frac{1}{2}}\)[/tex] and the expression [tex]\(\sqrt{\frac{1}{2}} + B + 9\)[/tex], respectively.
1. Calculate the Value of [tex]\(\sqrt{\frac{1}{2}}\)[/tex]:
- Firstly, [tex]\(\frac{1}{2}\)[/tex] is a simple fraction that evaluates to 0.5.
- Taking the square root of 0.5, we have:
[tex]\[ \sqrt{0.5} \approx 0.7071067811865476 \][/tex]
2. Determine the Value of [tex]\(B\)[/tex]:
- In this problem, the value of [tex]\(B\)[/tex] is not specified, so we can assume it's 0 for simplicity.
3. Add [tex]\(\sqrt{\frac{1}{2}}\)[/tex], [tex]\(B\)[/tex], and 9:
- Now, sum the values:
[tex]\[ 0.7071067811865476 + 0 + 9 \][/tex]
4. Simplify the Sum:
- Adding these together, we get:
[tex]\[ 0.7071067811865476 + 9 = 9.707106781186548 \][/tex]
Hence, the detailed step-by-step result of evaluating [tex]\(\sqrt{\frac{1}{2}} + B + 9\)[/tex] is:
[tex]\[ \sqrt{\frac{1}{2}} \approx 0.7071067811865476 \][/tex]
[tex]\[ \sqrt{\frac{1}{2}} + B + 9 \approx 9.707106781186548 \][/tex]
These are the values obtained for [tex]\(\sqrt{\frac{1}{2}}\)[/tex] and the expression [tex]\(\sqrt{\frac{1}{2}} + B + 9\)[/tex], respectively.