The chart below shows a production possibility schedule for a pastry shop that makes [tex][tex]$\$[/tex]0.50[tex]$[/tex] profit per donut and [tex]$[/tex]\[tex]$0.75$[/tex][/tex] profit per bagel.

\begin{tabular}{|l|l|l|}
\hline
Choice & \begin{tabular}{l}
Quantity of \\
Donuts
\end{tabular} & \begin{tabular}{l}
Quantity of \\
Bagels
\end{tabular} \\
\hline
A & 600 & 70 \\
\hline
B & 500 & 140 \\
\hline
C & 500 & 40 \\
\hline
\end{tabular}

Choice [tex][tex]$\square$[/tex][/tex] yields the largest profit.



Answer :

Alright, let's find out which choice yields the largest profit for the pastry shop.

The profits for each donut and each bagel are as follows:
- Profit per donut: \[tex]$0.50 - Profit per bagel: \$[/tex]0.75

We will calculate the total profit for each choice (A, B, and C) by using the given quantities of donuts and bagels, and then sum their respective profits.

Choice A:
- Quantity of donuts: 600
- Quantity of bagels: 70

Total profit for Choice A:
[tex]\[ (600 \text{ donuts} \times \$0.50/\text{donut}) + (70 \text{ bagels} \times \$0.75/\text{bagel}) = \$300 + \$52.50 = \$352.50 \][/tex]

Choice B:
- Quantity of donuts: 500
- Quantity of bagels: 140

Total profit for Choice B:
[tex]\[ (500 \text{ donuts} \times \$0.50/\text{donut}) + (140 \text{ bagels} \times \$0.75/\text{bagel}) = \$250 + \$105 = \$355 \][/tex]

Choice C:
- Quantity of donuts: 500
- Quantity of bagels: 40

Total profit for Choice C:
[tex]\[ (500 \text{ donuts} \times \$0.50/\text{donut}) + (40 \text{ bagels} \times \$0.75/\text{bagel}) = \$250 + \$30 = \$280 \][/tex]

Comparing the profits from the three choices:
- Profit for Choice A: \[tex]$352.50 - Profit for Choice B: \$[/tex]355
- Profit for Choice C: \$280

The choice that yields the largest profit is:
[tex]\[ \boxed{B} \][/tex]