Use substitution to solve this linear system.

[tex]\[
\begin{array}{l}
x = 3 + y \\
2x + 8y = -124
\end{array}
\][/tex]

a. [tex]\((-13, -10)\)[/tex]
b. [tex]\((-10, -10)\)[/tex]
c. [tex]\((-13, -13)\)[/tex]
d. [tex]\((-10, -13)\)[/tex]



Answer :

To solve this system of linear equations using substitution, we follow these steps:

Given:
[tex]\[ \begin{array}{l} x = 3 + y \\ 2x + 8y = -124 \end{array} \][/tex]

1. Substitute the expression for [tex]\(x\)[/tex] from the first equation into the second equation.

The first equation gives us:
[tex]\[ x = 3 + y \][/tex]

Substitute [tex]\(x\)[/tex] in the second equation:
[tex]\[ 2(3 + y) + 8y = -124 \][/tex]

2. Simplify the equation

Distribute the 2 in the equation:
[tex]\[ 6 + 2y + 8y = -124 \][/tex]

Combine like terms:
[tex]\[ 6 + 10y = -124 \][/tex]

3. Isolate the variable [tex]\(y\)[/tex]

Subtract 6 from both sides of the equation:
[tex]\[ 10y = -124 - 6 \][/tex]

Simplify the right-hand side:
[tex]\[ 10y = -130 \][/tex]

Divide both sides by 10:
[tex]\[ y = \frac{-130}{10} \][/tex]
[tex]\[ y = -13 \][/tex]

4. Substitute the value of [tex]\(y\)[/tex] back into the first equation to find [tex]\(x\)[/tex]

From the first equation, we had:
[tex]\[ x = 3 + y \][/tex]

Substitute [tex]\(y = -13\)[/tex] into this equation:
[tex]\[ x = 3 + (-13) \][/tex]
[tex]\[ x = 3 - 13 \][/tex]
[tex]\[ x = -10 \][/tex]

So, the solution to the system of equations is:
[tex]\[ (x, y) = (-10, -13) \][/tex]

Thus, the correct answer is:
[tex]\[ \text{d. } (-10, -13) \][/tex]