The table represents the function [tex]f(x)[/tex].

\begin{tabular}{|c|c|}
\hline [tex]x[/tex] & [tex]f(x)[/tex] \\
\hline -3 & -9 \\
\hline -2 & -6 \\
\hline -1 & -3 \\
\hline 0 & 0 \\
\hline 1 & 3 \\
\hline 2 & 6 \\
\hline 3 & 9 \\
\hline
\end{tabular}

What is [tex]f(3)[/tex]?

A. [tex]-9[/tex]
B. [tex]-1[/tex]
C. 1
D. 9



Answer :

Sure! Let's determine the value of [tex]\( f(3) \)[/tex] using the provided table.

We have the following values in the table:
[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -3 & -9 \\ \hline -2 & -6 \\ \hline -1 & -3 \\ \hline 0 & 0 \\ \hline 1 & 3 \\ \hline 2 & 6 \\ \hline 3 & 9 \\ \hline \end{array} \][/tex]

To find [tex]\( f(3) \)[/tex], we locate the row where [tex]\( x = 3 \)[/tex] and find the corresponding [tex]\( f(x) \)[/tex]:

When [tex]\( x = 3 \)[/tex], the value of [tex]\( f(x) \)[/tex] is 9.

Thus, [tex]\( f(3) = 9 \)[/tex].

Among the given choices, the correct answer is:

[tex]\[ \boxed{9} \][/tex]