To find the slope of a line that passes through two points, we use the slope formula:
[tex]\[
m = \frac{y_2 - y_1}{x_2 - x_1}
\][/tex]
where [tex]\((x_1, y_1) = (-3, 3)\)[/tex] and [tex]\((x_2, y_2) = (18, 26)\)[/tex].
First, we calculate the change in [tex]\(y\)[/tex] (delta [tex]\(y\)[/tex]):
[tex]\[
\Delta y = y_2 - y_1 = 26 - 3 = 23
\][/tex]
Next, we calculate the change in [tex]\(x\)[/tex] (delta [tex]\(x\)[/tex]):
[tex]\[
\Delta x = x_2 - x_1 = 18 - (-3) = 18 + 3 = 21
\][/tex]
Now, we substitute these values into the slope formula:
[tex]\[
m = \frac{\Delta y}{\Delta x} = \frac{23}{21}
\][/tex]
Therefore, the slope of the line that passes through the points [tex]\((-3, 3)\)[/tex] and [tex]\(18, 26)\)[/tex] is:
[tex]\[
\boxed{\frac{23}{21}}
\][/tex]