To find [tex]\( f(x) \)[/tex] when [tex]\( x = 8 \)[/tex], we substitute [tex]\( x \)[/tex] with 8 in the function [tex]\( f(x) = 6x - 4 \)[/tex].
Here are the steps to solve for [tex]\( f(8) \)[/tex]:
1. Start with the function definition:
[tex]\[
f(x) = 6x - 4
\][/tex]
2. Substitute [tex]\( x = 8 \)[/tex] into the function:
[tex]\[
f(8) = 6(8) - 4
\][/tex]
3. Multiply 6 by 8:
[tex]\[
6 \times 8 = 48
\][/tex]
4. Subtract 4 from 48:
[tex]\[
48 - 4 = 44
\][/tex]
Therefore, [tex]\( f(8) = 44 \)[/tex].
So, when [tex]\( x = 8 \)[/tex], [tex]\( f(x) \)[/tex] is [tex]\( 44 \)[/tex]. The correct answer is:
[tex]\[
\boxed{44}
\][/tex]