To find the walker's momentum, we will use the formula for momentum:
[tex]\[ \text{momentum} = \text{mass} \times \text{velocity} \][/tex]
In this problem, the mass ([tex]\( m \)[/tex]) of the person is given as [tex]\( 15 \, \text{kg} \)[/tex] and the velocity ([tex]\( v \)[/tex]) is given as [tex]\( 10 \, \text{m/s} \)[/tex].
Step-by-step, we substitute the given values into the formula:
1. Identify the mass: [tex]\( 15 \, \text{kg} \)[/tex]
2. Identify the velocity: [tex]\( 10 \, \text{m/s} \)[/tex]
3. Plug these values into the momentum formula:
[tex]\[
\text{momentum} = 15 \, \text{kg} \times 10 \, \text{m/s}
\][/tex]
4. Perform the multiplication:
[tex]\[
\text{momentum} = 150 \, \text{kg} \cdot \text{m/s}
\][/tex]
Thus, the walker's momentum is [tex]\( 150 \, \text{kg} \cdot \text{m/s} \)[/tex].
Therefore, the correct answer is:
B. [tex]\( 150 \, \text{kg} \cdot \text{m/s} \)[/tex]