A person with a mass of [tex][tex]$15 \, kg$[/tex][/tex] is walking downhill at a velocity of [tex][tex]$10 \, m/s$[/tex][/tex]. What is the walker's momentum?

A. [tex][tex]$15 \, kg \cdot m/s$[/tex][/tex]
B. [tex][tex]$150 \, kg \cdot m/s$[/tex][/tex]
C. [tex][tex]$75 \, kg \cdot m/s$[/tex][/tex]
D. [tex][tex]$5 \, kg \cdot m/s$[/tex][/tex]



Answer :

To find the walker's momentum, we will use the formula for momentum:

[tex]\[ \text{momentum} = \text{mass} \times \text{velocity} \][/tex]

In this problem, the mass ([tex]\( m \)[/tex]) of the person is given as [tex]\( 15 \, \text{kg} \)[/tex] and the velocity ([tex]\( v \)[/tex]) is given as [tex]\( 10 \, \text{m/s} \)[/tex].

Step-by-step, we substitute the given values into the formula:

1. Identify the mass: [tex]\( 15 \, \text{kg} \)[/tex]
2. Identify the velocity: [tex]\( 10 \, \text{m/s} \)[/tex]
3. Plug these values into the momentum formula:
[tex]\[ \text{momentum} = 15 \, \text{kg} \times 10 \, \text{m/s} \][/tex]

4. Perform the multiplication:
[tex]\[ \text{momentum} = 150 \, \text{kg} \cdot \text{m/s} \][/tex]

Thus, the walker's momentum is [tex]\( 150 \, \text{kg} \cdot \text{m/s} \)[/tex].

Therefore, the correct answer is:

B. [tex]\( 150 \, \text{kg} \cdot \text{m/s} \)[/tex]