Answer :
Let's complete Mr. Green's order form, step by step.
First, we need to determine the total for each line item by multiplying the quantity by the unit price.
### Line Item Totals
1. Krispy Kosmos
- Quantity: 1
- Unit Price: [tex]$2.89 - Total: \( 1 \times 2.89 = \$[/tex] 2.89 \)
2. Chewy Chocos
- Quantity: 2
- Unit Price: [tex]$3.19 - Total: \( 2 \times 3.19 = \$[/tex] 6.38 \)
3. Gooey Globs
- Quantity: 1
- Unit Price: [tex]$2.99 - Total: \( 1 \times 2.99 = \$[/tex] 2.99 \)
We can fill in these totals in the "Total of Line" column:
\begin{tabular}{|c|c|c|c|}
\hline Quantity & Description & Unit Price & Total of Line \\
\hline 1 & Krispy Kosmos & \[tex]$ 2.89 & \$[/tex]2.89 \\
\hline 2 & Chewy Chocos & \[tex]$ 3.19 & \$[/tex]6.38 \\
\hline 1 & Gooey Globs & \[tex]$ 2.99 & \$[/tex]2.99 \\
\hline
\end{tabular}
### Subtotal
Next, sum these line item totals to find the subtotal:
[tex]\[ 2.89 + 6.38 + 2.99 = \$ 12.26 \][/tex]
So, we can write in the "Total" row:
\begin{tabular}{|c|c|c|c|}
\hline & & Total & \[tex]$12.26 \\ \hline \end{tabular} ### Tax The sales tax rate is 5.2%. To find the tax amount, multiply the subtotal by the tax rate: \[ \text{Tax} = 12.26 \times 0.052 = \$[/tex] 0.63752 \]
### Total to Be Paid
Finally, add the tax to the subtotal to find the total amount to be paid:
[tex]\[ 12.26 + 0.63752 = \$ 12.89752 \][/tex]
Rounding to the nearest cent, we get:
[tex]\[ 12.89752 \approx 12.90 \][/tex]
So, we can fill in the rest of the form:
\begin{tabular}{|c|c|c|c|}
\hline Quantity & Description & Unit Price & Total of Line \\
\hline 1 & Krispy Kosmos & \[tex]$ 2.89 & \$[/tex]2.89 \\
\hline 2 & Chewy Chocos & \[tex]$ 3.19 & \$[/tex]6.38 \\
\hline 1 & Gooey Globs & \[tex]$ 2.99 & \$[/tex]2.99 \\
\hline & & & \\
\hline & & Total & \[tex]$12.26 \\ \hline & & 5.2\% tax & \$[/tex]0.64 \\
\hline & & Total to be paid & \[tex]$12.90 \\ \hline \end{tabular} Thus, the total amount to be paid by Mr. Green is \( c. \$[/tex] 12.90 \).
First, we need to determine the total for each line item by multiplying the quantity by the unit price.
### Line Item Totals
1. Krispy Kosmos
- Quantity: 1
- Unit Price: [tex]$2.89 - Total: \( 1 \times 2.89 = \$[/tex] 2.89 \)
2. Chewy Chocos
- Quantity: 2
- Unit Price: [tex]$3.19 - Total: \( 2 \times 3.19 = \$[/tex] 6.38 \)
3. Gooey Globs
- Quantity: 1
- Unit Price: [tex]$2.99 - Total: \( 1 \times 2.99 = \$[/tex] 2.99 \)
We can fill in these totals in the "Total of Line" column:
\begin{tabular}{|c|c|c|c|}
\hline Quantity & Description & Unit Price & Total of Line \\
\hline 1 & Krispy Kosmos & \[tex]$ 2.89 & \$[/tex]2.89 \\
\hline 2 & Chewy Chocos & \[tex]$ 3.19 & \$[/tex]6.38 \\
\hline 1 & Gooey Globs & \[tex]$ 2.99 & \$[/tex]2.99 \\
\hline
\end{tabular}
### Subtotal
Next, sum these line item totals to find the subtotal:
[tex]\[ 2.89 + 6.38 + 2.99 = \$ 12.26 \][/tex]
So, we can write in the "Total" row:
\begin{tabular}{|c|c|c|c|}
\hline & & Total & \[tex]$12.26 \\ \hline \end{tabular} ### Tax The sales tax rate is 5.2%. To find the tax amount, multiply the subtotal by the tax rate: \[ \text{Tax} = 12.26 \times 0.052 = \$[/tex] 0.63752 \]
### Total to Be Paid
Finally, add the tax to the subtotal to find the total amount to be paid:
[tex]\[ 12.26 + 0.63752 = \$ 12.89752 \][/tex]
Rounding to the nearest cent, we get:
[tex]\[ 12.89752 \approx 12.90 \][/tex]
So, we can fill in the rest of the form:
\begin{tabular}{|c|c|c|c|}
\hline Quantity & Description & Unit Price & Total of Line \\
\hline 1 & Krispy Kosmos & \[tex]$ 2.89 & \$[/tex]2.89 \\
\hline 2 & Chewy Chocos & \[tex]$ 3.19 & \$[/tex]6.38 \\
\hline 1 & Gooey Globs & \[tex]$ 2.99 & \$[/tex]2.99 \\
\hline & & & \\
\hline & & Total & \[tex]$12.26 \\ \hline & & 5.2\% tax & \$[/tex]0.64 \\
\hline & & Total to be paid & \[tex]$12.90 \\ \hline \end{tabular} Thus, the total amount to be paid by Mr. Green is \( c. \$[/tex] 12.90 \).