Which formula gives the [tex][tex]$x$[/tex][/tex]-coordinates of the maximum values for [tex][tex]$y=\cos (x)$[/tex][/tex]?

A. [tex][tex]$k \pi$[/tex][/tex] for any integer [tex][tex]$k$[/tex][/tex]
B. [tex][tex]$k \pi$[/tex][/tex] for [tex][tex]$k=0, \pm 2, \pm 4, \ldots$[/tex][/tex]
C. [tex][tex]$\frac{k \pi}{2}$[/tex][/tex] for any positive integer [tex][tex]$k$[/tex][/tex]
D. [tex][tex]$\frac{k \pi}{2}$[/tex][/tex] for [tex][tex]$k=0, \pm 2, \pm 4, \ldots$[/tex][/tex]



Answer :

To determine the formula that gives the [tex]\( x \)[/tex]-coordinates of the maximum values for the function [tex]\( y = \cos(x) \)[/tex], we need to identify where the cosine function reaches its peak value of 1.

The cosine function [tex]\(\cos(x)\)[/tex] has a period of [tex]\(2\pi\)[/tex], meaning it repeats its values every [tex]\(2\pi\)[/tex] units. The function [tex]\(\cos(x)\)[/tex] reaches its maximum value of 1 at multiple points across its domain.

Let's consider the general behavior of the cosine function:
- The cosine function reaches its maximum value of 1 at [tex]\( x = 0 \)[/tex].
- Because the function is periodic with a period of [tex]\(2\pi\)[/tex], it reaches the same maximum value at [tex]\( x = 2\pi, 4\pi, 6\pi, \ldots \)[/tex].
- Similarly, it reaches the same maximum value at [tex]\( x = -2\pi, -4\pi, -6\pi, \ldots \)[/tex].

The common characteristic among these [tex]\( x \)[/tex]-values is that they can be represented in the form [tex]\( x = k\pi \)[/tex], where [tex]\( k \)[/tex] is an even integer (including zero).

Thus, the correct answer is:
[tex]\[ \text{\boldmath $k \pi$ for any integer $k$} \][/tex]

This formula gives the [tex]\( x \)[/tex]-coordinates where the cosine function reaches its maximum value.