Calculate the enthalpy:

Given that the temperature of the water increased by 5.53°C, use the equation:
[tex]\[ Q = mc\Delta T \][/tex]
[tex]\[ Q = (50 \, \text{g}) (4.186 \, \text{J/g·°C}) (5.53 \, °C) \][/tex]

How much heat, in kJ, is produced? Round to the nearest 10 kJ.

Answer: ______ kJ

(Note: Enter only numbers in your answer.)



Answer :

Let's go through this step-by-step.

1. Given Data:
- Mass of water ([tex]\( m \)[/tex]) = 50 grams
- Specific heat capacity of water ([tex]\( c \)[/tex]) = 4.186 J/g°C
- Temperature change ([tex]\( \Delta T \)[/tex]) = 5.53°C

2. Write the formula:
The amount of heat ([tex]\( Q \)[/tex]) required to change the temperature of a substance is given by the formula:
[tex]\[ Q = mc\Delta T \][/tex]

3. Plug in the values:
Substitute the given values into the formula:
[tex]\[ Q = (50 \, \text{g}) \times (4.186 \, \text{J/g°C}) \times (5.53 \, \text{°C}) \][/tex]

4. Calculate [tex]\( Q \)[/tex]:
Calculate the product
[tex]\[ Q = 50 \times 4.186 \times 5.53 \][/tex]
After performing the multiplication, we get:
[tex]\[ Q = 1157.429 \, \text{J} \][/tex]

5. Convert Joules to kilojoules:
1 kJ = 1000 J
[tex]\[ Q_{\text{kJ}} = \frac{1157.429 \, \text{J}}{1000} = 1.157429 \, \text{kJ} \][/tex]

6. Round to the nearest 10 kJ:
Looking at the value 1.157429 kJ, when rounding to the nearest 10 kJ:
[tex]\[ \text{Rounded value} = 0 \, \text{kJ} \][/tex]

Answer:

So, the amount of heat produced, rounded to the nearest 10 kJ, is:

[tex]\[ \text{0} \, \text{kJ} \][/tex]