To find the value of [tex]\( x \)[/tex] in the equation [tex]\( 8x - 2y = 48 \)[/tex] given that [tex]\( y = 4 \)[/tex], follow these steps:
1. Substitute the value of [tex]\( y \)[/tex] into the equation:
[tex]\[
8x - 2(4) = 48
\][/tex]
2. Simplify inside the parentheses:
[tex]\[
8x - 8 = 48
\][/tex]
3. To isolate [tex]\( x \)[/tex], add 8 to both sides of the equation:
[tex]\[
8x = 48 + 8
\][/tex]
4. Simplify the right side:
[tex]\[
8x = 56
\][/tex]
5. Finally, divide both sides by 8 to solve for [tex]\( x \)[/tex]:
[tex]\[
x = \frac{56}{8}
\][/tex]
6. Simplify the division:
[tex]\[
x = 7
\][/tex]
Therefore, the value of [tex]\( x \)[/tex] is [tex]\( 7 \)[/tex].