What is the value of [tex][tex]$x$[/tex][/tex] in the equation [tex][tex]$8x - 2y = 48$[/tex][/tex], when [tex][tex]$y = 4$[/tex][/tex]?

A. 6
B. 7
C. 14
D. 48



Answer :

To find the value of [tex]\( x \)[/tex] in the equation [tex]\( 8x - 2y = 48 \)[/tex] given that [tex]\( y = 4 \)[/tex], follow these steps:

1. Substitute the value of [tex]\( y \)[/tex] into the equation:
[tex]\[ 8x - 2(4) = 48 \][/tex]

2. Simplify inside the parentheses:
[tex]\[ 8x - 8 = 48 \][/tex]

3. To isolate [tex]\( x \)[/tex], add 8 to both sides of the equation:
[tex]\[ 8x = 48 + 8 \][/tex]

4. Simplify the right side:
[tex]\[ 8x = 56 \][/tex]

5. Finally, divide both sides by 8 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{56}{8} \][/tex]

6. Simplify the division:
[tex]\[ x = 7 \][/tex]

Therefore, the value of [tex]\( x \)[/tex] is [tex]\( 7 \)[/tex].