Answered

If the radius of a circle is 35 units, find the circumference of the circle. Use [tex][tex]$\pi=\frac{22}{7}$[/tex][/tex].



Answer :

Sure! To find the circumference of a circle when the radius is known, we can use the formula:

[tex]\[ \text{Circumference} = 2 \pi r \][/tex]

Here, [tex]\( r \)[/tex] is the radius of the circle, and [tex]\( \pi \)[/tex] (pi) is a constant approximately equal to 3.1416, but we'll use [tex]\(\pi = \frac{22}{7}\)[/tex] as given.

Given:
- Radius [tex]\( r = 35 \)[/tex] units
- [tex]\(\pi = \frac{22}{7}\)[/tex]

Now, let's substitute these values into the formula for the circumference.

[tex]\[ \text{Circumference} = 2 \pi r \][/tex]
[tex]\[ \text{Circumference} = 2 \left(\frac{22}{7}\right) \times 35 \][/tex]

Next, we need to simplify the expression:

[tex]\[ \text{Circumference} = 2 \times \frac{22}{7} \times 35 \][/tex]

We can perform the multiplication in steps:

1. Multiply [tex]\(\frac{22}{7} \)[/tex] by 35:
[tex]\[ \frac{22}{7} \times 35 = \frac{22 \times 35}{7} \][/tex]

2. Simplify the fraction:
[tex]\[ \frac{22 \times 35}{7} = \frac{770}{7} = 110 \][/tex]

3. Now, multiply this result by 2:
[tex]\[ 2 \times 110 = 220 \][/tex]

Therefore, the circumference of the circle is [tex]\( 220 \)[/tex] units.

Finally, the circumference of the circle with a radius of 35 units is [tex]\( \boxed{220} \)[/tex] units.