Which of the following is an [tex][tex]$x$[/tex][/tex]-intercept of the function [tex][tex]$f(x)=x^2-81$[/tex][/tex]?

A. -9
B. -81
C. -72
D. -36



Answer :

To determine the [tex]\( x \)[/tex]-intercepts of the function [tex]\( f(x) = x^2 - 81 \)[/tex], we need to find the values of [tex]\( x \)[/tex] for which [tex]\( f(x) = 0 \)[/tex].

To do so, let's solve the equation [tex]\( x^2 - 81 = 0 \)[/tex] step-by-step.

1. Start with the given function:
[tex]\[ x^2 - 81 = 0 \][/tex]

2. Add 81 to both sides of the equation:
[tex]\[ x^2 = 81 \][/tex]

3. Take the square root of both sides to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \pm \sqrt{81} \][/tex]

4. Calculate the square root of 81:
[tex]\[ \sqrt{81} = 9 \][/tex]

5. Include both the positive and negative solutions:
[tex]\[ x = 9 \quad \text{and} \quad x = -9 \][/tex]

Thus, the [tex]\( x \)[/tex]-intercepts of the function [tex]\( f(x) = x^2 - 81 \)[/tex] are [tex]\( x = 9 \)[/tex] and [tex]\( x = -9 \)[/tex].

Given the choices:
A. -9
B. -81
C. -72
D. -36

The correct answer is A. -9.