20. An object has a mass of 13.5 kilograms. What force is required to accelerate it at a rate of [tex][tex]$9.5 \, \text{m/s}^2$[/tex][/tex]?

A. [tex][tex]$128.25 \, \text{N}$[/tex][/tex]
B. [tex][tex]$81.00 \, \text{N}$[/tex][/tex]
C. [tex][tex]$132.30 \, \text{N}$[/tex][/tex]
D. [tex][tex]$173.75 \, \text{N}$[/tex][/tex]



Answer :

To determine the force required to accelerate an object, we use Newton's second law of motion. Newton's second law states that force is equal to the product of mass and acceleration. This relationship is expressed with the formula:

[tex]\[ F = m \times a \][/tex]

Where:
- [tex]\( F \)[/tex] is the force,
- [tex]\( m \)[/tex] is the mass of the object, and
- [tex]\( a \)[/tex] is the acceleration.

Given the values:
- [tex]\( m = 13.5 \)[/tex] kilograms,
- [tex]\( a = 9.5 \)[/tex] meters per second squared,

Substitute these values into the formula:

[tex]\[ F = 13.5 \times 9.5 \][/tex]

Multiplying the mass by the acceleration:

[tex]\[ F = 128.25 \text{ Newtons} \][/tex]

Therefore, the force required to accelerate the object is:

A. [tex]\( 128.25 \text{ N} \)[/tex]