Which of the following is equal to the rational expression when [tex][tex]$x \neq -4$[/tex][/tex] or 3?
[tex]\[
\frac{x^2 - 4x + 3}{x^2 + x - 12}
\][/tex]

A. [tex][tex]$\frac{x-1}{x-3}$[/tex][/tex]

B. [tex][tex]$\frac{x-1}{x+4}$[/tex][/tex]

C. [tex][tex]$\frac{x-3}{x+1}$[/tex][/tex]

D. [tex][tex]$\frac{x+1}{x+4}$[/tex][/tex]



Answer :

Let's simplify the given rational expression step-by-step.

1. Given expression:

[tex]\[ \frac{x^2-4x+3}{x^2+x-12} \][/tex]

2. Factor the numerator and the denominator.

The numerator is [tex]\( x^2 - 4x + 3 \)[/tex].
To factor [tex]\( x^2 - 4x + 3 \)[/tex], we look for two numbers that multiply to 3 and add up to -4. These numbers are -1 and -3.

Therefore, [tex]\( x^2 - 4x + 3 = (x - 3)(x - 1) \)[/tex].

The denominator is [tex]\( x^2 + x - 12 \)[/tex].
To factor [tex]\( x^2 + x - 12 \)[/tex], we look for two numbers that multiply to -12 and add up to 1. These numbers are 4 and -3.

Therefore, [tex]\( x^2 + x - 12 = (x - 3)(x + 4) \)[/tex].

3. Rewrite the rational expression with the factored numerator and denominator:

[tex]\[ \frac{(x - 3)(x - 1)}{(x - 3)(x + 4)} \][/tex]

4. Cancel out the common factor [tex]\((x - 3)\)[/tex] in both the numerator and the denominator:

[tex]\[ \frac{(x - 3)(x - 1)}{(x - 3)(x + 4)} = \frac{x - 1}{x + 4} \quad \text{for} \quad x \neq 3 \][/tex]

Therefore, the simplified expression is:

[tex]\[ \frac{x - 1}{x + 4} \][/tex]

5. Comparing this result with the given choices, we find that:

B. [tex]\(\frac{x-1}{x+4}\)[/tex] is the correct answer.

Hence, the correct choice is B.