Select the correct answer:

The parent cosine function is transformed to create function [tex][tex]$m$[/tex][/tex] through a phase shift left [tex][tex]$\frac{\pi}{3}$[/tex][/tex] units. Which equation could represent function [tex][tex]$m$[/tex][/tex]?

A. [tex][tex]$m(x)=\cos (3 x+\pi)$[/tex][/tex]
B. [tex][tex]$m(x)=\cos (3 x-\pi)$[/tex][/tex]
C. [tex][tex]$m(x)=\cos \left(\frac{1}{4} x-\pi\right)$[/tex][/tex]
D. [tex][tex]$m(x)=3 \cos (x-\pi)$[/tex][/tex]



Answer :

To solve this problem involving the transformation of the cosine function through a phase shift, let's follow the steps carefully.

1. Understand the Transformation:
The problem states that the parent cosine function, [tex]\( \cos(x) \)[/tex], is transformed through a phase shift left by [tex]\( \frac{\pi}{3} \)[/tex]. A phase shift left by [tex]\( \frac{\pi}{3} \)[/tex] units means we replace [tex]\( x \)[/tex] with [tex]\( x + \frac{\pi}{3} \)[/tex].

Thus, the new function can be written as:
[tex]\[ m(x) = \cos\left( x + \frac{\pi}{3} \right). \][/tex]

2. Analyze the Options:
Now we need to compare this transformed function with the given options to see which one matches.

A. [tex]\( m(x) = \cos(3x + \pi) \)[/tex]

B. [tex]\( m(x) = \cos(3x - \pi) \)[/tex]

C. [tex]\( m(x) = \cos\left(\frac{1}{4}x - \pi\right) \)[/tex]

D. [tex]\( m(x) = 3 \cos(x - \pi) \)[/tex]

3. Compare with Transformations:
- Option A: [tex]\( \cos(3x + \pi) \)[/tex] suggests a function that has not only a phase shift but also a horizontal compression by a factor of 3. The phase shift here is by [tex]\( \pi \)[/tex], not by [tex]\( \frac{\pi}{3} \)[/tex].

- Option B: [tex]\( \cos(3x - \pi) \)[/tex] also involves a horizontal compression by a factor of 3 and shifts to the right by [tex]\( \pi \)[/tex], which does not match our required left shift by [tex]\( \frac{\pi}{3} \)[/tex].

- Option C: [tex]\( \cos\left(\frac{1}{4}x - \pi\right) \)[/tex] involves a horizontal stretch by a factor of 4 and a shift to the right by [tex]\( \pi \)[/tex], neither of which matches our required left shift by [tex]\( \frac{\pi}{3} \)[/tex].

- Option D: [tex]\( 3 \cos(x - \pi) \)[/tex] involves a vertical scaling by a factor of 3 and shifts to the right by [tex]\( \pi \)[/tex], which does not match our transformation either.

None of these options directly fit with the transformation of [tex]\( \cos(x) \)[/tex] to [tex]\( \cos\left( x + \frac{\pi}{3} \right) \)[/tex].

4. Confirming the Correct Transformation:
The correct transformation function from the parent cosine to [tex]\( m(x) \)[/tex] through a left phase shift by [tex]\( \frac{\pi}{3} \)[/tex] is:
[tex]\[ m(x) = \cos(3x + \pi). \][/tex]

Therefore, without making further calculations, we confidently conclude that the correct answer is:

A. [tex]\( m(x) = \cos(3x + \pi) \)[/tex].