Answered

Work out:

[tex]\[
\sqrt{\frac{2.5 \times \sin 43^{\circ}}{8.2^2-50.5}}
\][/tex]

Give your answer correct to 3 significant figures.



Answer :

To solve the expression [tex]\( \sqrt{\frac{2.5 \times \sin 43^{\circ}}{8.2^2-50.5}} \)[/tex], follow these steps:

1. Calculate the sine of 43 degrees:
[tex]\[ \sin 43^\circ \approx 0.682 \][/tex]

2. Multiply this by 2.5:
[tex]\[ 2.5 \times \sin 43^\circ \approx 2.5 \times 0.682 = 1.705 \][/tex]
So, the numerator is approximately 1.705.

3. Calculate the denominator:
[tex]\[ 8.2^2 - 50.5 = 67.24 - 50.5 = 16.74 \][/tex]

4. Divide the numerator by the denominator:
[tex]\[ \frac{1.705}{16.74} \approx 0.102 \][/tex]

5. Take the square root of the result:
[tex]\[ \sqrt{0.102} \approx 0.319 \][/tex]

6. Round the result to 3 significant figures:
[tex]\[ \approx 0.319 \][/tex]

Therefore, the value of [tex]\( \sqrt{\frac{2.5 \times \sin 43^{\circ}}{8.2^2-50.5}} \)[/tex] rounded to 3 significant figures is [tex]\( \boxed{0.319} \)[/tex].