9. If [tex][tex]$f(x) = \left\{ \begin{array}{ll} 5 + x & \text{for } x \ \textless \ 1 \\ 4 & \text{for } x = 1 \\ 7x - 1 & \text{for } x \ \textgreater \ 1 \end{array} \right.$[/tex][/tex] has a removable discontinuity at [tex][tex]$x = 1$[/tex][/tex], then [tex][tex]$f(x)$[/tex][/tex] will be continuous at [tex][tex]$x = 1$[/tex][/tex] when [tex][tex]$f(1) =$[/tex][/tex]

A. 4
B. 6
C. 8
D. 10



Answer :

To determine if the function [tex]\(f(x)\)[/tex] is continuous at [tex]\(x = 1\)[/tex], we need to check if the left-hand limit, right-hand limit, and the value of the function at [tex]\(x = 1\)[/tex] are all equal.

The piecewise function [tex]\(f(x)\)[/tex] is defined as:
[tex]\[ f(x) = \begin{cases} 5 + x & \text{for } x < 1 \\ 4 & \text{for } x = 1 \\ 7x - 1 & \text{for } x > 1 \end{cases} \][/tex]

To ensure continuity at [tex]\(x = 1\)[/tex]:

1. Left-hand limit as [tex]\(x\)[/tex] approaches 1:
[tex]\[ \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (5 + x) = 5 + 1 = 6 \][/tex]

2. Right-hand limit as [tex]\(x\)[/tex] approaches 1:
[tex]\[ \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (7x - 1) = 7 \cdot 1 - 1 = 6 \][/tex]

Both the left-hand limit and the right-hand limit as [tex]\(x\)[/tex] approaches 1 are equal to 6.

For [tex]\(f(x)\)[/tex] to be continuous at [tex]\(x = 1\)[/tex], the value of the function at [tex]\(x = 1\)[/tex] must also equal the limit as [tex]\(x\)[/tex] approaches 1 from both sides. Therefore,
[tex]\[ f(1) = \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = 6 \][/tex]

Given the options:
a) 4
b) 6
c) 98
d) 10

[tex]\(f(x)\)[/tex] will be continuous at [tex]\(x = 1\)[/tex] when [tex]\(f(1) = 6\)[/tex].

Thus, the correct answer is [tex]\(\boxed{6}\)[/tex].