Point [tex][tex]$Q$[/tex][/tex] lies on the circle and has an [tex][tex]$x$[/tex][/tex]-coordinate of 4. Which value could be the [tex][tex]$y$[/tex][/tex]-coordinate for point [tex][tex]$Q$[/tex][/tex]?

A. [tex][tex]$2 \sqrt{5}$[/tex][/tex]
B. [tex][tex]$4 \sqrt{2}$[/tex][/tex]
C. [tex][tex]$2 \sqrt{13}$[/tex][/tex]
D. [tex][tex]$8 \sqrt{2}$[/tex][/tex]



Answer :

To determine which value could be the [tex]\( y \)[/tex]-coordinate for point [tex]\( Q \)[/tex] with an [tex]\( x \)[/tex]-coordinate of [tex]\( 4 \)[/tex], we need to examine the given options numerically.

1. Option [tex]\( 2 \sqrt{5} \)[/tex]:
[tex]\[ 2 \sqrt{5} \approx 2 \times 2.236 = 4.472 \][/tex]
This value approximately equals [tex]\( 4.472 \)[/tex].

2. Option [tex]\( 4 \sqrt{2} \)[/tex]:
[tex]\[ 4 \sqrt{2} \approx 4 \times 1.414 = 5.657 \][/tex]
This value approximately equals [tex]\( 5.657 \)[/tex].

3. Option [tex]\( 2 \sqrt{13} \)[/tex]:
[tex]\[ 2 \sqrt{13} \approx 2 \times 3.606 = 7.211 \][/tex]
This value approximately equals [tex]\( 7.211 \)[/tex].

4. Option [tex]\( 8 \sqrt{2} \)[/tex]:
[tex]\[ 8 \sqrt{2} \approx 8 \times 1.414 = 11.314 \][/tex]
This value approximately equals [tex]\( 11.314 \)[/tex].

Given the potential numeric values, the possible [tex]\( y \)[/tex]-coordinates for point [tex]\( Q \)[/tex] are:
- [tex]\( 4.472 \)[/tex]
- [tex]\( 5.657 \)[/tex]
- [tex]\( 7.211 \)[/tex]
- [tex]\( 11.314 \)[/tex]

Therefore, the potential [tex]\( y \)[/tex]-coordinate for point [tex]\( Q \)[/tex] can be one of these values that match the respective approximations from the given options:
[tex]\[ 4.472, 5.657, 7.211, \text{ and } 11.314 \][/tex]

Hence, any of the following could be a valid [tex]\( y \)[/tex]-coordinate:
- [tex]\( 2 \sqrt{5} \approx 4.472 \)[/tex]
- [tex]\( 4 \sqrt{2} \approx 5.657 \)[/tex]
- [tex]\( 2 \sqrt{13} \approx 7.211 \)[/tex]
- [tex]\( 8 \sqrt{2} \approx 11.314 \)[/tex]

These calculations confirm that the [tex]\( y \)[/tex]-coordinate for point [tex]\( Q \)[/tex] can indeed be one of these values provided in the question.