Use vertical multiplication to find the product of:

[tex]\[
\begin{array}{r}
x^3 + 2x + 3 \\
\times \quad x^3 - x + 1
\end{array}
\][/tex]

A. [tex][tex]$x^6 - x^4 + x^3 - 2x^2 + 2x + 3$[/tex][/tex]

B. [tex][tex]$x^6 + x^4 + 4x^3 - 2x^2 - x + 3$[/tex][/tex]

C. [tex][tex]$x^6 + x^4 + 3x^3 - 2x^2 - 3x + 3$[/tex][/tex]

D. [tex][tex]$x^6 + 2x^3 - 2x^2 + 2x + 1$[/tex][/tex]



Answer :

To find the product of the polynomials [tex]\((x^3 + 2x + 3)\)[/tex] and [tex]\((x^3 - x + 1)\)[/tex] using vertical multiplication, follow these steps.

Firstly, align the polynomials for multiplication:

[tex]\[ \begin{array}{r} x^3 + 2x + 3 \\ \times \quad (x^3 - x + 1) \\ \end{array} \][/tex]

We will multiply each term of the first polynomial by each term of the second polynomial. Start with the last term [tex]\(1\)[/tex] of the second polynomial:

[tex]\[ \begin{array}{r} x^3 + 2x + 3 \\ \times \quad 1 \quad = x^3 + 2x + 3 \\ \end{array} \][/tex]

Next, multiply each term of the first polynomial by [tex]\(-x\)[/tex] (shifting one place to the left):

[tex]\[ \begin{array}{r} x^3 + 2x + 3 \\ \times \quad (-x) \quad = -x^4 - 2x^2 - 3x \\ \end{array} \][/tex]

Finally, multiply each term of the first polynomial by [tex]\(x^3\)[/tex] (shifting three places to the left):

[tex]\[ \begin{array}{r} x^3 + 2x + 3 \\ \times \quad x^3 \quad = x^6 + 2x^4 + 3x^3 \\ \end{array} \][/tex]

Now, let's add these partial products:

[tex]\[ \begin{array}{r} x^6 + 2x^4 + 3x^3 \\ \quad - x^4 - 2x^2 - 3x \\ \quad + x^3 + 2x + 3 \\ \end{array} \][/tex]

Combine like terms:

1. [tex]\(x^6\)[/tex]
2. [tex]\(2x^4 - x^4 = x^4\)[/tex]
3. [tex]\(3x^3 + x^3 = 4x^3\)[/tex]
4. [tex]\(-2x^2\)[/tex]
5. [tex]\(-3x + 2x = -x\)[/tex]
6. [tex]\(3\)[/tex]

Putting all these together, the final product is:

[tex]\[ x^6 + x^4 + 4x^3 - 2x^2 - x + 3 \][/tex]

Comparing this result with the given options, the correct answer is:

B. [tex]\(x^6 + x^4 + 4x^3 - 2x^2 - x + 3\)[/tex]