Which expression can be used to determine the slope of the linear function represented in the table?

\begin{tabular}{|c|c|}
\hline
[tex][tex]$x$[/tex][/tex] & [tex][tex]$y$[/tex][/tex] \\
\hline
0 & 5 \\
\hline
4 & 9 \\
\hline
\end{tabular}

A. [tex][tex]$\frac{9-5}{4-0}$[/tex][/tex]
B. [tex][tex]$\frac{4-0}{9-5}$[/tex][/tex]
C. [tex][tex]$\frac{5-0}{9-4}$[/tex][/tex]
D. [tex][tex]$\frac{9-4}{5-0}$[/tex][/tex]



Answer :

To determine the slope of a linear function represented by the coordinates in a table, we use the formula for the slope [tex]\( m \)[/tex], which is given by:

[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Given the values from the table:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 0 & 5 \\ \hline 4 & 9 \\ \hline \end{array} \][/tex]

We can identify the points as [tex]\((x_1, y_1) = (0, 5)\)[/tex] and [tex]\((x_2, y_2) = (4, 9)\)[/tex].

Plugging these values into the slope formula, we get:

[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{9 - 5}{4 - 0} \][/tex]

Calculating the numerator and the denominator separately:

[tex]\[ 9 - 5 = 4 \quad \text{and} \quad 4 - 0 = 4 \][/tex]

So the slope [tex]\( m \)[/tex] is:

[tex]\[ m = \frac{4}{4} = 1 \][/tex]

Therefore, the correct expression that can be used to determine the slope of the linear function represented in the table is:

[tex]\[ \frac{9-5}{4-0} \][/tex]