Solve [tex]2x + 2 \ \textgreater \ 10[/tex]

A. [tex]x \ \textgreater \ 4[/tex]
B. [tex]x \ \textless \ 6[/tex]
C. [tex]x \ \textgreater \ 6[/tex]
D. [tex]x \ \textless \ 4[/tex]



Answer :

To solve the inequality [tex]\(2x + 2 > 10\)[/tex], follow these steps:

1. Isolate the term involving [tex]\(x\)[/tex]: Subtract 2 from both sides of the inequality.
[tex]\[ 2x + 2 - 2 > 10 - 2 \][/tex]
Simplifying this, we get:
[tex]\[ 2x > 8 \][/tex]

2. Solve for [tex]\(x\)[/tex]: To isolate [tex]\(x\)[/tex], divide both sides of the inequality by 2.
[tex]\[ \frac{2x}{2} > \frac{8}{2} \][/tex]
Simplifying this, we find:
[tex]\[ x > 4 \][/tex]

Thus, the correct answer is A. [tex]\(x > 4\)[/tex].