Answered

Which is equivalent to [tex][tex]$64^{\frac{1}{4}}$[/tex][/tex]?

A. [tex][tex]$2 \sqrt[4]{4}$[/tex][/tex]
B. 4
C. 16
D. [tex][tex]$16 \sqrt[4]{4}$[/tex][/tex]



Answer :

To determine which expression is equivalent to [tex]\( 64^{\frac{1}{4}} \)[/tex], we will evaluate each given option and compare it to [tex]\( 64^{\frac{1}{4}} \)[/tex].

1. Evaluate [tex]\( 64^{\frac{1}{4}} \)[/tex]:
[tex]\[ 64^{\frac{1}{4}} = \sqrt[4]{64} \][/tex]
We know that [tex]\( 64 = 4^3 \)[/tex]. So:
[tex]\[ \sqrt[4]{64} = \sqrt[4]{4^3} = (4^3)^{\frac{1}{4}} = 4^{\frac{3}{4}} \][/tex]
Evaluating [tex]\( 4^{\frac{3}{4}} \)[/tex]:
[tex]\[ 4 = 2^2 \quad \text{so} \quad 4^{\frac{3}{4}} = (2^2)^{\frac{3}{4}} = 2^{2 \cdot \frac{3}{4}} = 2^{\frac{3}{2}} = 2 \cdot \sqrt{2} \approx 2.8284271247461903 \][/tex]
Hence, [tex]\( 64^{\frac{1}{4}} \approx 2.8284271247461903 \)[/tex].

2. Evaluate [tex]\( 2 \sqrt[4]{4} \)[/tex]:
[tex]\[ 2 \sqrt[4]{4} = 2 \cdot 4^{\frac{1}{4}} \][/tex]
We know [tex]\( 4 = 2^2 \)[/tex], so:
[tex]\[ 4^{\frac{1}{4}} = (2^2)^{\frac{1}{4}} = 2^{\frac{1}{2}} = \sqrt{2} \approx 1.4142135623730951 \][/tex]
Therefore:
[tex]\[ 2 \cdot 4^{\frac{1}{4}} = 2 \cdot \sqrt{2} \approx 2 \cdot 1.4142135623730951 = 2.8284271247461903 \][/tex]
Thus, [tex]\( 2 \sqrt[4]{4} \approx 2.8284271247461903 \)[/tex].

3. Evaluate [tex]\( 4 \)[/tex]:
[tex]\[ 4 = 4 \][/tex]
This is a simple constant value.

4. Evaluate [tex]\( 16 \)[/tex]:
[tex]\[ 16 = 16 \][/tex]
This is another constant value.

5. Evaluate [tex]\( 16 \sqrt[4]{4} \)[/tex]:
[tex]\[ 16 \sqrt[4]{4} = 16 \cdot 4^{\frac{1}{4}} \][/tex]
Again, using [tex]\( 4^{\frac{1}{4}} \approx 1.4142135623730951 \)[/tex]:
[tex]\[ 16 \cdot 4^{\frac{1}{4}} = 16 \cdot 1.4142135623730951 \approx 22.627416997969522 \][/tex]
Thus, [tex]\( 16 \sqrt[4]{4} \approx 22.627416997969522 \)[/tex].

By comparing all the evaluated expressions, we observe that the value of [tex]\( 2 \sqrt[4]{4} \approx 2.8284271247461903 \)[/tex] is equivalent to [tex]\( 64^{\frac{1}{4}} \approx 2.8284271247461903 \)[/tex].

Therefore, the expression equivalent to [tex]\( 64^{\frac{1}{4}} \)[/tex] is:
[tex]\[ 2 \sqrt[4]{4} \][/tex]