Which of the following is the product of the rational expressions shown below?

[tex]\[ \frac{3}{x+2} \cdot \frac{7}{2x} \][/tex]

A. [tex][tex]$\frac{21}{2 x^2+4 x}$[/tex][/tex]
B. [tex][tex]$\frac{42}{2 x+4}$[/tex][/tex]
C. [tex][tex]$\frac{21}{2 x+4}$[/tex][/tex]
D. [tex][tex]$\frac{42}{2 x^2+4 x}$[/tex][/tex]



Answer :

Let's find the product of the given rational expressions step-by-step:

We need to multiply:
[tex]\[ \frac{3}{x+2} \cdot \frac{7}{2x} \][/tex]

### Step 1: Multiply the numerators

First, multiply the numerators of the two fractions:
[tex]\[ 3 \times 7 = 21 \][/tex]

### Step 2: Multiply the denominators

Next, multiply the denominators of the two fractions:
[tex]\[ (x+2) \times (2x) \][/tex]

To expand this, we distribute [tex]\(2x\)[/tex] across [tex]\(x + 2\)[/tex]:
[tex]\[ 2x \times x + 2x \times 2 = 2x^2 + 4x \][/tex]

### Step 3: Form the new fraction

Now, combine the results from the numerator and the denominator:
[tex]\[ \frac{21}{2x^2 + 4x} \][/tex]

### Step 4: Simplify the fraction (if possible)

In this case, the numerator [tex]\(21\)[/tex] and the denominator [tex]\(2x^2 + 4x\)[/tex] do not have any common factors other than 1. Therefore, the fraction cannot be simplified further.

### Conclusion

Therefore, the product of the rational expressions [tex]\(\frac{3}{x+2}\)[/tex] and [tex]\(\frac{7}{2x}\)[/tex] is:
[tex]\[ \frac{21}{2x^2 + 4x} \][/tex]

So, the correct answer is:
[tex]\[ \boxed{\frac{21}{2x^2 + 4x}} \][/tex]

Which matches:
A. [tex]\(\frac{21}{2 x^2+4 x}\)[/tex]