Which of the following is the product of the rational expressions shown below?

[tex]\[
\frac{x-1}{x+5} \cdot \frac{x+1}{x-5}
\][/tex]

A. [tex]\(\frac{x-1}{x-5}\)[/tex]

B. [tex]\(\frac{x^2-1}{x^2-5}\)[/tex]

C. [tex]\(\frac{x^2-1}{x^2+10}\)[/tex]

D. [tex]\(\frac{x^2-1}{x^2-25}\)[/tex]



Answer :

Sure, I can provide a detailed step-by-step solution for this problem.

Given the rational expressions:
[tex]\[ \frac{x-1}{x+5} \cdot \frac{x+1}{x-5} \][/tex]

To find the product of these rational expressions, follow these steps:

### Step 1: Multiply the numerators together
The numerators are [tex]\(x-1\)[/tex] and [tex]\(x+1\)[/tex].

When you multiply these two binomials, you use the distributive property, specifically the FOIL (First, Outer, Inner, Last) method:

[tex]\[ (x-1)(x+1) \][/tex]

Using the difference of squares formula:
[tex]\[ (a-b)(a+b) = a^2 - b^2 \][/tex]

Here, [tex]\(a = x\)[/tex] and [tex]\(b = 1\)[/tex]. Therefore:
[tex]\[ (x-1)(x+1) = x^2 - 1 \][/tex]

### Step 2: Multiply the denominators together
The denominators are [tex]\(x+5\)[/tex] and [tex]\(x-5\)[/tex].

Similarly, apply the difference of squares formula:
[tex]\[ (x+5)(x-5) = x^2 - 25 \][/tex]

### Step 3: Combine the results
We now have the numerators and denominators multiplied:

[tex]\[ \frac{(x-1)(x+1)}{(x+5)(x-5)} = \frac{x^2 - 1}{x^2 - 25} \][/tex]

### Conclusion
The product of the rational expressions [tex]\(\frac{x-1}{x+5} \cdot \frac{x+1}{x-5}\)[/tex] is [tex]\(\frac{x^2 - 1}{x^2 - 25}\)[/tex].

Hence, the correct option is:
[tex]\[ \boxed{D \; \frac{x^2 - 1}{x^2 - 25}} \][/tex]