Which of the following is the quotient of the rational expressions shown below?

[tex]\[ \frac{x+2}{x+8} \div \frac{2x}{3} \][/tex]

A. [tex]\[ \frac{x^2+2x}{3x+4} \][/tex]

B. [tex]\[ \frac{2x^2+5}{2x^2+11} \][/tex]

C. [tex]\[ \frac{3x+6}{2x^2+16x} \][/tex]

D. [tex]\[ \frac{2x^2+4x}{3x+24} \][/tex]



Answer :

To find the quotient of the given rational expressions, we need to divide [tex]\(\frac{x+2}{x+8}\)[/tex] by [tex]\(\frac{2x}{3}\)[/tex]. Here are the steps:

1. Rewrite the division as a multiplication by the reciprocal:

[tex]\[ \frac{x+2}{x+8} \div \frac{2x}{3} = \frac{x+2}{x+8} \times \frac{3}{2x} \][/tex]

2. Multiply the numerators and denominators:

The numerator becomes:

[tex]\[ (x+2) \cdot 3 = 3(x+2) \][/tex]

The denominator becomes:

[tex]\[ (x+8) \cdot 2x = 2x(x+8) \][/tex]

3. Combine the results:

[tex]\[ \frac{3(x+2)}{2x(x+8)} \][/tex]

4. Simplify the expression:

Since there are no further common factors between the numerator and the denominator, the simplified form of the expression is:

[tex]\[ \frac{3(x+2)}{2x(x+8)} \][/tex]

Therefore, the correct choice is:
[tex]\[ \boxed{\frac{3(x+2)}{2x(x+8)}} \][/tex]

Reviewing the provided options, we identify that option C is the simplified form:

[tex]\[ \boxed{\frac{3(x+2)}{2x(x+8)}} = \frac{3(x+2)}{2x(x+8)} \][/tex]

So, the correct answer is:

C. [tex]\(\frac{3(x+6)}{2x^2 + 16x}\)[/tex]